%I #12 Oct 15 2013 22:32:01
%S 436,305635361,110,35,195566,77,26,55,38,76,938,104,212308,85,74,
%T 106677,86,161
%N a(n) = 2n + A054905(n).
%C The sequence begins 436, 305635361, 110, 35, 195566, 77, 26, 55, 38, 76, 938, 104, 212308, 85, 74, 106677, 86, 161, ?, 91, 87, 92, 122, 111, 1585396, 145, 94, 76627, 10283, 159, 772, 133, 122, 412, 194, 142, 964, 205, 374, 925, 6725, 209, ?, 1015, 178, ?, ?, 206, 146, ?, ..., where the other missing terms (designated by "?") are unknown, if they exist (see also A206768).
%F Composite x satisfying sigma(x-2n) = sigma(x) - 2n.
%e To terms of A054905, where sigma(x+2n)=sigma(x)+2n replacing x+2n=y,x=y-2n, we get sigma(y)-2n=sigma(y-2n);
%e For several analogous sequences, the corresponding "mirror-solutions" can be easily constructed. See: e.g. A015913-A015918; A050507, A054799, A054903-A054906; A054982-A054987; A059118; A055009, A055458, A063500, etc.
%Y Cf. A054905.
%K nonn,more
%O 1,1
%A _Labos Elemer_, May 26 2003