This site is supported by donations to The OEIS Foundation.

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A084237 a(n) = M(10^n), where M(n) is Mertens's function. 4

%I

%S 1,-1,1,2,-23,-48,212,1037,1928,-222,-33722,-87856,62366,599582,

%T -875575,-3216373,-3195437,-21830254,-46758740,899990187,461113106,

%U 3395895277,-2061910120

%N a(n) = M(10^n), where M(n) is Mertens's function.

%H B. Boncompagni, <a href="http://mertens.redgolpe.com">Selected values of the Mertens function</a>

%H Eugene Kuznetsov, <a href="http://arxiv.org/abs/1108.0135">Computing the Mertens function on a GPU</a>, arXiv:1108.0135 [math.NT], 2011.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MertensFunction.html">Mertens Function</a>

%F Mertens's function: Sum_{k=1..n} mu(k), where mu = MÃ¶bius function (A008683).

%t s = 0; i = 1; Do[ While[i <= 10^n, s = s + MoebiusMu[i]; i++ ]; Print[s], {n, 0, 50}]

%o (Perl) use ntheory ":all"; say mertens(10**\$_) for 0..15; # _Dana Jacobsen_, May 22 2015

%Y Cf. A002321, A008683.

%K sign,more

%O 0,4

%A _Robert G. Wilson v_, May 15 2003

%E More terms from _Eric W. Weisstein_, Jun 27 2003

%E a(17) from _Bernardo Boncompagni_, Jul 06 2011

%E Corrected a(17) and added a(18)-a(22) from Eugene Kuznetsov, a(17)-a(19) independently confirmed by _Richard Sladkey_, Aug 28 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 15:16 EDT 2018. Contains 315270 sequences. (Running on oeis4.)