login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Length of lists created by n substitutions k -> Range[0,Mod[k+1,4]] starting with {0}.
1

%I #13 Oct 17 2022 01:51:00

%S 1,2,5,14,38,102,273,731,1958,5245,14050,37636,100816,270057,723405,

%T 1937794,5190793,13904642,37246538,99772766,267262553,715919535,

%U 1917742590,5137081001,13760762966,36861127432,98740361920,264497039329

%N Length of lists created by n substitutions k -> Range[0,Mod[k+1,4]] starting with {0}.

%C Equivalent to replacements 0 -> {0,1}; 1 -> {0,1,2}; 2 -> {0,1,2,3}; 3 -> {0} operating n times with {0}.

%H G. C. Greubel, <a href="/A084085/b084085.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (3,-1,0,1).

%F G.f.: (1-x+x^3)/(1-3*x+x^2-x^4).

%e {0}, {0,1}, {0,1,0,1,2}, {0,1,0,1,2,0,1,0,1,2,0,1,2,3} have lengths 1, 2, 5, 14.

%t Length/@Flatten/@NestList[ # /. k_Integer:>Range[0, Mod[k+1, 4]]&, {0}, 8]

%t LinearRecurrence[{3,-1,0,1}, {1,2,5,14}, 41] (* _G. C. Greubel_, Oct 15 2022 *)

%o (Magma) I:=[1,2,5,14]; [n le 4 select I[n] else 3*Self(n-1) -Self(n-2) +Self(n-4): n in [1..41]]; // _G. C. Greubel_, Oct 15 2022

%o (SageMath)

%o def A084085_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P( (1-x+x^3)/(1-3*x+x^2-x^4) ).list()

%o A084085_list(40) # _G. C. Greubel_, Oct 15 2022

%Y Cf. A084086.

%K nonn,easy

%O 0,2

%A _Wouter Meeussen_, May 11 2003