%I
%S 6,0,8,1,9,7,6,6,2,1,6,2,2,4,6,5,7,2,9,6,7,0,1,9,6,7,3,1,9,6,5,2,3,7,
%T 0,4,8,5,7,9,8,5,6,3,5,1,9,3,7,4,1,2,9,6,4,2,1,0,2,1,4,8,6,2,1,6,1,5,
%U 1,0,0,6,8,7,3,3,7,1,3,7,6,9,0,1,6,2,8,6,4,1,7,2,5,9,7,0,1,0,1,8,6,8,9,5
%N Decimal expansion of (3/2)*log(3/2).
%C More generally for x>1 : sum(k>=1,H(k)/x^k) = x/(1x)*log(11/x)
%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%F 3/2*log(3/2)=sum(k>=1, H(k)/3^k) where H(k) is the kth harmonic number. 3/2*log(3/2)=0.6081976621622465729670196731965237...
%o (PARI) log(3/2)*3/2 \\ _Charles R Greathouse IV_, May 15 2019
%Y Cf. A016627.
%K cons,nonn
%O 0,1
%A _Benoit Cloitre_, Jun 15 2003
