login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 8/3 - 5*(-2)^n/3.
6

%I #21 May 07 2024 03:29:23

%S 1,6,-4,16,-24,56,-104,216,-424,856,-1704,3416,-6824,13656,-27304,

%T 54616,-109224,218456,-436904,873816,-1747624,3495256,-6990504,

%U 13981016,-27962024,55924056,-111848104,223696216,-447392424,894784856,-1789569704,3579139416,-7158278824

%N a(n) = 8/3 - 5*(-2)^n/3.

%H Vincenzo Librandi, <a href="/A083581/b083581.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (-1,2).

%F a(n) = (8-5(-2)^n)/3.

%F G.f.: (1+7x)/((1-x)(1+2x)).

%F E.g.f.: (8*exp(x)-5*exp(-2*x))/3.

%t Table[(8 - 5 (-2)^n)/3, {n, 0, 40}] (* or *) CoefficientList[Series[(1 + 7 x)/((1 - x) (1 + 2 x)), {x, 0, 40}], x] (* _Vincenzo Librandi_, Aug 23 2014 *)

%o (Magma) [(8-5*(-2)^n)/3: n in [0..40]]; // _Vincenzo Librandi_, Aug 23 2014

%o (PARI) a(n)=8/3-5*(-2)^n/3 \\ _Charles R Greathouse IV_, Oct 07 2015

%Y Cf. A083582.

%K easy,sign

%O 0,2

%A _Paul Barry_, May 01 2003