login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A083425 a(n) = (5*5^n + (-1)^n)/6. 4

%I

%S 1,4,21,104,521,2604,13021,65104,325521,1627604,8138021,40690104,

%T 203450521,1017252604,5086263021,25431315104,127156575521,

%U 635782877604,3178914388021,15894571940104,79472859700521,397364298502604,1986821492513021,9934107462565104

%N a(n) = (5*5^n + (-1)^n)/6.

%C Binomial transform of A083424. Inverse binomial transform of A052934.

%C Primes occur at indices n = 4, 66, 100, 102, 228, 346, ..., see A138647. - _R. J. Mathar_, Jan 19 2011

%C Sum_{i=0..m} (-1)^(m+i)*5^i, for m >= 0, gives all terms of the sequence. - _Bruno Berselli_, Aug 28 2013

%H Vincenzo Librandi, <a href="/A083425/b083425.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,5).

%F a(n) = (5*5^n + (-1)^n)/6.

%F G.f.: 1/((1+x)*(1-5x)).

%F E.g.f.: (5*exp(5x) + exp(-x))/6.

%F a(n) = Sum_{k=0..n} C(n-k,k)*4^(n-2k)*5^k. - _Paul Barry_, Jul 29 2004

%F a(n) = A015531(n+1). - _R. J. Mathar_, Sep 17 2008

%F a(n) = 4*a(n-1) + 5*a(n-2). - _Vincenzo Librandi_, Jun 23 2012

%p seq(coeff(series(factorial(n)*(5*exp(5*x)+exp(-x))/6,x,n+1), x, n), n = 0 .. 25); # _Muniru A Asiru_, Sep 21 2018

%t LinearRecurrence[{4,5},{1,4},40] (* _Vincenzo Librandi_, Jun 23 2012 *)

%o (MAGMA) [n le 2 select n^2 else 4*Self(n-1)+5*Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Jun 23 2012

%o (PARI) a(n)=(5*5^n+(-1)^n)/6 \\ _Charles R Greathouse IV_, Oct 07 2015

%o (GAP) List([0..25],n->(5*5^n+(-1)^n)/6); # _Muniru A Asiru_, Sep 21 2018

%K nonn,easy

%O 0,2

%A _Paul Barry_, Apr 30 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 20 11:58 EDT 2021. Contains 345164 sequences. (Running on oeis4.)