login
a(n) = A082895(n)/n, where A082895(n) is the closest number to sigma(n) which is divisible by n.
3

%I #9 Oct 09 2018 15:15:26

%S 1,2,1,2,1,2,1,2,1,2,1,2,1,2,2,2,1,2,1,2,2,2,1,3,1,2,1,2,1,2,1,2,1,2,

%T 1,3,1,2,1,2,1,2,1,2,2,2,1,3,1,2,1,2,1,2,1,2,1,2,1,3,1,2,2,2,1,2,1,2,

%U 1,2,1,3,1,2,2,2,1,2,1,2,1,2,1,3,1,2,1,2,1,3,1,2,1,2,1,3,1,2,2,2

%N a(n) = A082895(n)/n, where A082895(n) is the closest number to sigma(n) which is divisible by n.

%H Antti Karttunen, <a href="/A082898/b082898.txt">Table of n, a(n) for n = 1..100000</a>

%F a(n) = floor[(floor(n/2)+sigma[n])/n], sigma() = A000203().

%t Table[Floor[(Floor[n/2]+DivisorSigma[1, n])/n], {n, 1, 100}]

%o (PARI) A082898(n) = { my(s=sigma(n), a = ((s\n)*n), b = (1+(s\n))*n); if((b-s) <= abs(a-s), b, a)/n; }; \\ _Antti Karttunen_, Oct 09 2018

%Y Cf. A082893, A082894, A082895, A082901.

%K nonn

%O 1,2

%A _Labos Elemer_, Apr 22 2003