%I #24 May 14 2021 12:15:12
%S 2,3,5,191,19391,38183,1508051,1609061,1628261,3717173,3916193,
%T 161535161,161838161,170646071,172747271,182949281,190909091,
%U 352909253,354848453,360818063,364636463,15052625051,15150805151,15253635251
%N Palindromic Sophie Germain primes: both p and 2p+1 are palindromic primes.
%C Subsequence of A051835 (intersection of A002385 and A005384).
%D H. Dubner, "Palindromic Sophie Germain primes", Journal of Recreational Mathematics, Vol. 26(1):38-41 1994 Baywood Inc. NY
%H Dmitry Petukhov, <a href="/A082520/b082520.txt">Table of n, a(n) for n = 1..804</a> (terms up to 10^15).
%H H. Dubner, <a href="https://web.archive.org/web/20050406043022/http://ksc9.th.com/warut/dubner.html">Palindromic Sophie Germain Primes</a>
%e 3916193 is in the sequence because both 3916193 and 2*3916193 + 1 = 7832387 are palindromic primes.
%t Select[Prime@Range@1000000,PalindromeQ@#&&PalindromeQ[2#+1]&&PrimeQ[2#+1]&] (* _Giorgos Kalogeropoulos_, May 14 2021 *)
%Y Cf. A002385, A005384, A051835.
%Y The associated primes are listed in A082565.
%K base,nonn
%O 1,1
%A _Lekraj Beedassy_, Apr 30 2003