Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Feb 01 2021 19:40:22
%S 1,2,3,4,5,1,7,2,3,1,11,1,13,1,1,8,17,2,19,1,1,1,23,3,5,1,9,1,29,10,
%T 31,2,1,1,1,2,37,1,1,1,41,6,43,1,1,1,47,1,7,2,1,1,53,1,1,1,1,1,59,12,
%U 61,1,1,4,1,2,67,1,1,14,71,12,73,1,1,1,1,6,79,1,3,1,83,14,1,1,1,1,89,1,1,1,1
%N Greatest common divisor of n and its sum of prime factors (with repetition).
%C For n > 4, a(n) = n iff n is prime.
%H Antti Karttunen, <a href="/A082299/b082299.txt">Table of n, a(n) for n = 1..20000</a> (first 1000 terms from Harvey P. Dale)
%F a(n) = gcd(n, A001414(n)).
%F a(n) = n / A082344(n) = A001414(n) / A082343(n). - _Antti Karttunen_, Feb 01 2021
%e a(100) = GCD(2*2*5*5,2+2+5+5) = GCD(2*2*5,2*7) = 2;
%e a(200) = GCD(2*2*2*5*5,2+2+2+5+5) = GCD(2*2*2*5,2*2*2*2) = 8.
%t Table[GCD[Total[Times@@@FactorInteger[n]],n],{n,100}] (* _Harvey P. Dale_, Dec 27 2015 *)
%o (PARI)
%o A001414(n) = ((n=factor(n))[, 1]~*n[, 2]); \\ From A001414.
%o A082299(n) = gcd(n, A001414(n)); \\ _Antti Karttunen_, Feb 01 2021
%Y Cf. A001414, A082300 (positions of ones), A082343, A082344.
%Y Cf. also A099635, A099636.
%K nonn
%O 1,2
%A _Reinhard Zumkeller_, Apr 08 2003