login
a(n) = 18*n + 10.
4

%I #39 Apr 11 2024 17:22:04

%S 10,28,46,64,82,100,118,136,154,172,190,208,226,244,262,280,298,316,

%T 334,352,370,388,406,424,442,460,478,496,514,532,550,568,586,604,622,

%U 640,658,676,694,712,730,748,766,784,802,820,838,856,874,892,910,928,946

%N a(n) = 18*n + 10.

%C Solutions to (11^x + 13^x) mod 19 = 17.

%H Vincenzo Librandi, <a href="/A082286/b082286.txt">Table of n, a(n) for n = 0..2000</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H Leo Tavares, <a href="/A082286/a082286.jpg">Illustration: Triangles</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).

%F a(n) = A006370(A016945(n)). - _Reinhard Zumkeller_, Apr 17 2008

%F a(n) = 2*A017221(n). - _Michel Marcus_, Feb 15 2014

%F a(n) = A060544(n+2) - 9*A000217(n-1). - _Leo Tavares_, Oct 15 2022

%F From _Elmo R. Oliveira_, Apr 08 2024: (Start)

%F G.f.: 2*(5+4*x)/(1-x)^2.

%F E.g.f.: 2*exp(x)*(5 + 9*x).

%F a(n) = 2*a(n-1) - a(n-2) for n >= 2.

%F a(n) = 2*(A022267(n+1) - A022267(n)). (End)

%t Range[10, 1000, 18] (* _Vladimir Joseph Stephan Orlovsky_, Jun 01 2011 *)

%o (Magma) [18*n + 10: n in [0..60]]; // _Vincenzo Librandi_, May 05 2011

%o (PARI) a(n)=18*n+10 \\ _Charles R Greathouse IV_, Jul 10 2016

%Y Cf. A006370, A008600, A016945, A161705.

%Y Cf. A000217, A017221, A022267, A060544.

%K easy,nonn

%O 0,1

%A _Cino Hilliard_, May 10 2003

%E More terms from _Reinhard Zumkeller_, Apr 17 2008