login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Consider recurrence b(0) = (2n+1)/4, b(n) = b(0)*ceiling(b(n-1)); sequence gives first integer reached (or -1 if no integer is ever reached).
3

%I #7 Sep 24 2018 15:53:32

%S 5,7,36,1711985,13,15,1700,114,168,42000323,275,324,58,62,23658393,

%T 6055,58311963,9321,121770,13760,135,141,1960,344148,5734229,

%U 3391007266515,8825709,23546737390632357,244,252,1526332099115586230,105432399233,27538521,5680

%N Consider recurrence b(0) = (2n+1)/4, b(n) = b(0)*ceiling(b(n-1)); sequence gives first integer reached (or -1 if no integer is ever reached).

%H Robert Israel, <a href="/A081851/b081851.txt">Table of n, a(n) for n = 2..10000</a>

%p g:= proc(n) local b0, b, count;

%p b0:= (2*n+1)/4; b:= b0;

%p for count from 1 do

%p b:= b0 * ceil(b);

%p if b::integer then return b fi

%p od

%p end proc:

%p map(g, [$2..100]); # _Robert Israel_, Sep 21 2018

%Y Cf. A073524, A081849, A081850.

%K nonn

%O 2,1

%A _N. J. A. Sloane_, Apr 13 2003