OFFSET
0,2
COMMENTS
Binomial transform of A034478. 4th binomial transform of (1, 0, 4, 0, 16, 0, 64, ...).
Case k=4 of the family of recurrences a(n) = 2*k*a(n-1) - (k^2-4)*a(n-2), a(0)=1, a(1)=k.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Index entries for linear recurrences with constant coefficients, signature (8,-12).
FORMULA
a(n) = 8*a(n-1) - 12*a(n-2), a(0)=1, a(1)=4.
G.f.: (1-4*x)/((1-2*x)*(1-6*x)).
E.g.f.: exp(4*x)*cosh(2*x).
a(n) = Sum_{k=0..floor(n/2)} binomial(n,2*k) * 4^(n-k) = Sum_{k=0..n} binomial(n,k) * 4^(n-k/2) * (1+(-1)^k)/2. - Paul Barry, Nov 22 2003
a(n) = Sum_{k=0..n} 4^k*A098158(n,k). - Philippe Deléham, Dec 04 2006
MATHEMATICA
LinearRecurrence[{8, -12}, {1, 4}, 30] (* Harvey P. Dale, May 03 2013 *)
CoefficientList[Series[(1-4x)/((1-2x)(1-6x)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 08 2013 *)
PROG
(Magma) [(6^n+2^n)/2: n in [0..30]]; // Vincenzo Librandi, Aug 08 2013
(PARI) a(n)=(6^n+2^n)/2 \\ Charles R Greathouse IV, Oct 07 2015
(Sage) [2^(n-1)*(3^n + 1) for n in (0..30)] # G. C. Greubel, Aug 02 2019
(GAP) List([0..30], n-> 2^(n-1)*(3^n + 1)); # G. C. Greubel, Aug 02 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Mar 18 2003
STATUS
approved