login
Binomial transform of Chebyshev coefficients A001794.
5

%I #14 Sep 08 2022 08:45:09

%S 1,8,47,238,1101,4788,19899,79866,311769,1189728,4454919,16415622,

%T 59659173,214229772,761200659,2679525522,9353893041,32409397944,

%U 111534054111,381480041502,1297471217661,4390248981348,14785128121707

%N Binomial transform of Chebyshev coefficients A001794.

%H Vincenzo Librandi, <a href="/A081279/b081279.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (12,-54,108,-81).

%F a(n) = (2*n^3 + 30*n^2 + 103*n + 81) * 3^(n-4).

%F a(n) = 12*a(n-1) -54*a(n-2) +108*a(n-3) +8*1a(n-4), a(0)=1, a(1)=8, a(2)=47, a(3)=238.

%F G.f.: (1-2*x)*(1-x)^2/(1-3*x)^4.

%t CoefficientList[Series[(1 - 2 x) (1 - x)^2 / (1 - 3 x)^4, {x, 0, 40}], x] (* _Vincenzo Librandi_, Aug 07 2013 *)

%t LinearRecurrence[{12,-54,108,-81},{1,8,47,238},30] (* _Harvey P. Dale_, Jul 27 2015 *)

%o (Magma) [(2*n^3+30*n^2 + 103*n + 81)*3^(n - 4): n in [0..25]]; // _Vincenzo Librandi_, Aug 07 2013

%Y Cf. A007051, A006234, A081278, A081280.

%K easy,nonn

%O 0,2

%A _Paul Barry_, Mar 16 2003