login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

8th binomial transform of (1,7,0,0,0,0,0,...).
3

%I #22 Aug 23 2024 08:40:12

%S 1,15,176,1856,18432,176128,1638400,14942208,134217728,1191182336,

%T 10468982784,91268055040,790273982464,6803228196864,58274116272128,

%U 496979255754752,4222124650659840,35747322042253312,301741175033823232

%N 8th binomial transform of (1,7,0,0,0,0,0,...).

%H Vincenzo Librandi, <a href="/A081043/b081043.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (16,-64).

%F a(n) = 16*a(n-1) - 64*a(n-2), a(0)=1, a(1)=15.

%F a(n) = (7n+8)*8^(n-1).

%F a(n) = Sum_{k=0..n} (k+1)*7^k*binomial(n, k).

%F G.f.: (1-x)/(1-8x)^2.

%t LinearRecurrence[{16,-64},{1,15},20] (* or *) Table[(7n+8)8^(n-1),{n,0,20}] (* _Harvey P. Dale_, Feb 22 2012 *)

%o (Magma) I:=[1, 15]; [n le 2 select I[n] else 16*Self(n-1)-64*Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Feb 23 2012

%Y Cf. A081042, A081044.

%K easy,nonn

%O 0,2

%A _Paul Barry_, Mar 04 2003