The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A080020 Primes of the form 9k^2 + 3k + 367, where k can be negative. 2
 367, 373, 379, 397, 409, 439, 457, 499, 523, 577, 607, 673, 709, 787, 829, 919, 967, 1069, 1123, 1237, 1297, 1423, 1489, 1627, 1699, 2089, 2347, 2437, 2719, 2917, 3019, 3229, 3559, 3673, 3907, 4027, 4273, 4657, 4789, 5059, 5197, 5479, 5623, 6067, 6373 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Original definition: Primes of the form q(n) = 370 + 18*binomial(ceiling(n/2), 2) + 3*(-1)^n*(2*ceiling(n/2) - 1). The smallest positive k for which q(k) is not prime is k = 26. Every q(k) is a divisor of some value of e(x) = x^2 + x + 41, the Euler prime-generating polynomial. Specifically, e(3*k^2 - 2*k + 122) = q(2*k) * e(k-1) and e(3*k^2 + 2*k + 122) = q(2*k + 1) * e(k). Also primes of the form (k^2 + 1467)/4 with k odd. These primes are composite in O_Q(sqrt(-163)), since they can be expressed as (k/2 - 3*sqrt(-163))*(k/2 + 3*sqrt(-163)). For example, (7/2 - 3*sqrt(-163)/2)(7/2 + 3*sqrt(-163)/2) = 379. - Alonso del Arte, Nov 15 2017 LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 FORMULA From Alonso del Arte, Nov 16 2017: (Start) ((6n - 1)^2 + 1467)/4 = (36n^2 - 12n + 1468)/2 = 9n^2 - 3n + 367. ((6n + 1)^2 + 1467)/4 = (36n^2 + 12n + 1468)/2 = 9n^2 + 3n + 367. (End) EXAMPLE Given k = -2, we have 9 * 4 - 3 * 2 + 367 = 36 - 6 + 367 = 397 (a prime). Given k = -1, we have 9 - 3 + 367 = 373 (a prime). Given k = 0, we have 367 (a prime). Given k = 1, we have 9 + 3 + 367 = 379 (a prime). Given k = 2, we have 9 * 4 + 3 * 2 + 367 = 36 + 6 + 367 = 409 (a prime). MATHEMATICA Union[Select[Table[9n^2 + 3n + 367, {n, -30, 30}], PrimeQ]] (* Harvey P. Dale, Mar 23 2013 *) CROSSREFS Cf. A005846. Sequence in context: A279982 A286793 A079493 * A192448 A118566 A320711 Adjacent sequences:  A080017 A080018 A080019 * A080021 A080022 A080023 KEYWORD nonn,easy AUTHOR T. Amdeberhan, Jan 20 2003 EXTENSIONS Edited by Dean Hickerson, Jan 20 2003 New definition from Charles R Greathouse IV, Feb 15 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 08:36 EST 2021. Contains 349543 sequences. (Running on oeis4.)