login
a(n) = floor(1/(n-1) * Sum_{k=1..n-1} a(k)^(n/k)), given a(0)=1, a(1)=3, a(2)=7.
3

%I #5 Jun 06 2024 13:49:50

%S 1,3,7,22,63,180,512,1457,4144,11791,33564,95580,272280,775922,

%T 2211891,6307338,17991183,51333407,146508751,418260894,1194397553,

%U 3411667838,9747639585,27857756981,79635405673,227708537573,651276560978

%N a(n) = floor(1/(n-1) * Sum_{k=1..n-1} a(k)^(n/k)), given a(0)=1, a(1)=3, a(2)=7.

%e a(4)=63 since 63 = floor[(1/3){3^(4/1) + 7^(4/2) + 22^(4/3)}].

%Y Cf. A079116, A079117, A079118, A079119, A079120, A079121.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Dec 27 2002

%E Definition corrected by _Georg Fischer_, Jun 06 2024