%I #3 Mar 30 2012 17:28:41
%S 1,2,6,22,86,306,882,1764,1764,8738,6892,1682,14706,4182,1250,6250,
%T 3750,1250
%N Number of permutations of length n containing the minimum number of monotone subsequences of length 4.
%C Conjectured to equal A079105 (and so have period 3) from a(17) onwards.
%H Joseph Myers, <a href="http://www.combinatorics.org/Volume_9/Abstracts/v9i2r4.html">The minimum number of monotone subsequences</a>, Electronic J. Combin. 9(2) (2002), #R4.
%Y Cf. A079102, A079103, A079105, A079106.
%K nonn
%O 1,2
%A _Joseph Myers_, Dec 23 2002