login
Least prime p introducing prime-difference pattern {d, 2*d}, where d = 2*n, i.e., {p, p+2*n, p+2*n+4*n} = {p, p+2*n, p+6*n} are consecutive primes.
4

%I #16 Feb 11 2021 23:01:07

%S 5,397,503,1823,1627,8317,5939,94153,69539,83117,444187,177019,428873,

%T 1179649,955511,1625027,2541289,1290683,19856363,12183757,5412091,

%U 23374859,27248701,38235013,21369059,34718041,84120737,59859131,125283913,44155159,70136597,324954127

%N Least prime p introducing prime-difference pattern {d, 2*d}, where d = 2*n, i.e., {p, p+2*n, p+2*n+4*n} = {p, p+2*n, p+6*n} are consecutive primes.

%e For n=3, d = 2*n = 6, d-pattern = {6, 12}, a(3) = 503, first corresponding prime triple is {503, 509, 521}.

%t d[x_] := Prime[x+1]-Prime[x]; t=Table[0, {70}]; Do[s=d[n]/2; If[(d[n+1]==4*s)&&(t[[s]]==0), t[[s]]=Prime[n]], {n, 2, 100000}]; t

%o (PARI) a(n) = my(p=5, q=3, r=2); until(r+2*n==q&&q+4*n==p, r=q; q=p; p=nextprime(p+1)); r; \\ _Jinyuan Wang_, Feb 10 2021

%Y Cf. A079012, A079013.

%K nonn

%O 1,1

%A _Labos Elemer_, Jan 21 2003

%E Terms corrected and more terms from _Jinyuan Wang_, Feb 10 2021