%I
%S 0,2,0,4,3,2,0,6,0,5,0,4,5,2,3,8,5,2,0,7,0,2,0,6,6,7,0,4,7,5,0,10,0,7,
%T 3,4,7,2,5,9,9,2,0,4,3,2,0,8,0,8,5,9,9,2,3,6,0,9,0,7,11,2,0,12,8,2,0,
%U 9,0,5,0,6,11,9,6,4,0,7,0,11,0,11,0,4,8,2,7,6,13,5,5,4,0,2,3,10,13,2,0
%N Let r+i*s be the sum, with multiplicity, of the firstquadrant Gaussian primes dividing n; sequence gives s values.
%C A Gaussian integer z = x+iy is in the first quadrant if x > 0, y >= 0. Just one of the 4 associates z, z, i*z, i*z is in the first quadrant.
%C The sequence is fully additive.
%H Amiram Eldar, <a href="/A078909/b078909.txt">Table of n, a(n) for n = 1..10000</a>
%H Michael Somos, <a href="/A078458/a078458.txt">PARI program for finding prime decomposition of Gaussian integers</a>
%H <a href="/index/Ga#gaussians">Index entries for Gaussian integers and primes</a>
%e 5 factors into the product of the primes 1+2*i, 12*i, but the firstquadrant associate of 12*i is i*(12*i) = 2+i, so r+i*s = 1+2*i + 2+i = 3+3*i. Therefore a(5) = 3.
%t a[n_] := Module[{f = FactorInteger[n, GaussianIntegers>True]}, p = f[[;;,1]]; e = f[[;;,2]]; Im[Plus @@ ((If[Abs[#] == 1, 0, #]& /@ p) * e)]]; Array[a, 100] (* _Amiram Eldar_, Feb 28 2020 *)
%Y Cf. A078458, A078908, A078910, A078911, A080088, A080089.
%K nonn,easy
%O 1,2
%A _N. J. A. Sloane_, Jan 11 2003
%E More terms and further information from _Vladeta Jovovic_, Jan 27 2003
