The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078350 Number of primes in {n, f(n), f(f(n)), ..., 1}, where f is the Collatz function defined by f(x) = x/2 if x is even; f(x) = 3x + 1 if x is odd. 12
 0, 1, 3, 1, 2, 3, 6, 1, 6, 2, 5, 3, 3, 6, 4, 1, 4, 6, 7, 2, 1, 5, 4, 3, 7, 3, 25, 6, 6, 4, 24, 1, 7, 4, 3, 6, 7, 7, 11, 2, 25, 1, 8, 5, 4, 4, 23, 3, 7, 7, 6, 3, 3, 25, 24, 6, 8, 6, 11, 4, 5, 24, 20, 1, 7, 7, 9, 4, 3, 3, 22, 6, 25, 7, 2, 7, 6, 11, 11, 2, 5, 25, 24, 1, 1, 8, 9, 5, 10, 4, 20, 4, 3, 23, 20 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Number of primes in the trajectory of n under the 3x+1 map (i.e., the number of primes until the trajectory reaches 1, including 2 once). - Benoit Cloitre, Dec 23 2002 a(A196871(n)) = 0. - Reinhard Zumkeller, Oct 08 2011 a(A181921(n)) = n and a(m) <> n for m < A181921(n). - Reinhard Zumkeller, Apr 03 2012 LINKS T. D. Noe, Table of n, a(n) for n = 1..10000 J. C. Lagarias, The 3x+1 problem and its generalizations, Amer. Math. Monthly, 92 (1985), 3-23. Eric Weisstein's World of Mathematics, Collatz Problem Wikipedia, Collatz conjecture FORMULA a(n) = A055509(n) + 1 for n > 1. a(n) = 1 when n > 1 is in A000079, i.e., a power of 2. - Benoit Cloitre, Dec 20 2017 EXAMPLE 3 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1; in this trajectory 3, 5, 2 are primes hence a(3) = 3. - Benoit Cloitre, Dec 23 2002 The finite sequence n, f(n), f(f(n)), ..., 1 for n = 12 is 12, 6, 3, 10, 5, 16, 8, 4, 2, 1, which has three prime terms. Hence a(12) = 3. MATHEMATICA f[n_] := n/2 /; Mod[n, 2] == 0 f[n_] := 3 n + 1 /; Mod[n, 2] == 1 g[n_] := Module[{i, p}, i = n; p = 0; While[i > 1, If[PrimeQ[i], p = p + 1]; i = f[i]]; p]; Table[g[n], {n, 1, 100}] Table[Count[NestWhileList[If[EvenQ[#], #/2, 3#+1]&, n, #!=1&], _?PrimeQ], {n, 100}] (* Harvey P. Dale, Aug 29 2012 *) PROG (PARI) for(n=2, 500, s=n; t=0; while(s!=1, if(isprime(s)==1, t=t+1, t=t); if(s%2==0, s=s/2, s=(3*s+1)); if(s==1, print1(t, ", "); ); )) \\ Benoit Cloitre, Dec 23 2002 (PARI) a(n)=my(s=isprime(n)); while(n>1, if(n%2, n=(3*n+1)/2, n/=2); s+=isprime(n)); s \\ Charles R Greathouse IV, Apr 28 2015 (PARI) A078350(n, c=n>1)={while(1>=valuation(n, 2), isprime(n)&&c++; n=n*3+1); c} \\ M. F. Hasler, Dec 05 2017 (Haskell) a078350 n = sum \$ map a010051 \$ takeWhile (> 1) \$ iterate a006370 n  -- Reinhard Zumkeller, Oct 08 2011 CROSSREFS Cf. A064684, A006370, A010051. Sequence in context: A245547 A138881 A070983 * A078719 A087227 A060477 Adjacent sequences:  A078347 A078348 A078349 * A078351 A078352 A078353 KEYWORD nonn,nice AUTHOR Joseph L. Pe, Dec 23 2002 EXTENSIONS Edited by N. J. A. Sloane, Jan 17 2009 at the suggestion of R. J. Mathar STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 9 04:05 EDT 2020. Contains 333343 sequences. (Running on oeis4.)