%I #6 Mar 30 2012 18:39:11
%S 8,11,15,17,15,11,12,14,12,14,9,14,12,17,21,23,21,16,18,20,18,20,15,
%T 20,18,23,27,29,27,22,24,26,24,26,21,26,24,29,33,35,33,28,30,32,30,32,
%U 27,32,30,35,39,41,39,34,36,38,36,38,33,38,36,41,45,47,45,40,42,44,39,44
%N Let u(1)=n, u(2)=n+1, v(1)=n+2, v(2)=n+3, u(k)=abs(u(k1)v(k2)), v(k)=abs(v(k1)u(k2)), then a(n) is the smallest integer such that for any k>=a(n), v(k)=u(k).
%F a(n)/n > 1/2; for n>= 7, a(n) = (1/2)*(n+b(n)) where b(n) is the 12periodic sequence (17, 20, 15, 18, 7, 16, 11, 20, 27, 30, 25, 14)
%K nonn
%O 1,1
%A _Benoit Cloitre_, Dec 05 2002
