%I #14 Sep 08 2022 08:45:08
%S 1,-2,2,1,-8,16,-15,-10,66,-127,112,96,-543,1006,-830,-895,4456,-7952,
%T 6097,8166,-36478,62721,-44320,-73280,297921,-493602,318082,648961,
%U -2427688,3875536,-2246735,-5685290,19739586,-30355327,15546192,49357856,-160163423,237157326,-104629950
%N Expansion of 1/(1+2*x+2*x^2-x^3).
%H G. C. Greubel, <a href="/A077992/b077992.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (-2,-2,1).
%F a(n) = (-1)^n*A077944(n).
%t CoefficientList[Series[1/(1+2x+2x^2-x^3),{x,0,40}],x] (* or *) LinearRecurrence[ {-2,-2,1},{1,-2,2},40] (* _Harvey P. Dale_, Aug 17 2017 *)
%o (PARI) my(x='x+O('x^40)); Vec(1/(1+2*x+2*x^2-x^3)) \\ _G. C. Greubel_, Jun 26 2019
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1+2*x+2*x^2-x^3) )); // _G. C. Greubel_, Jun 26 2019
%o (Sage) (1/(1+2*x+2*x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # _G. C. Greubel_, Jun 26 2019
%o (GAP) a:=[1,-2,2];; for n in [4..40] do a[n]:=-2*a[n-1]-2*a[n-2]+a[n-3]; od; a; # _G. C. Greubel_, Jun 26 2019
%Y Cf. A077944.
%K sign
%O 0,2
%A _N. J. A. Sloane_, Nov 17 2002