OFFSET
0,2
COMMENTS
a(n-1)=R(n) for n>=1, where R(n) is the number of 01-words of length n in which all runlengths of 1's are odd. Example: R(3) counts 001,010,100,101,111. - Clark Kimberling, Jun 26 2004
REFERENCES
Clark Kimberling, Binary words with restricted repetitions and associated compositions of integers, in Applications of Fibonacci Numbers, vol.10, Proceedings of the Eleventh International Conference on Fibonacci Numbers and Their Applications, William Webb, editor, Congressus Numerantium, Winnipeg, Manitoba 194 (2009) 141-151.
LINKS
Index entries for linear recurrences with constant coefficients, signature (2,1,-3,1)
FORMULA
a(n)=a(n-1)+2a(n-2)-a(n-3)+1 for n>=3. a(n)=2a(n-1)+a(n-2)-3a(n-3)+a(n-4) for n>=4. - Clark Kimberling, Jun 26 2004
PROG
(PARI) Vec((1-x)^(-1)/(1-x-2*x^2+x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved