

A077797


Numbers k for which there exist kdigit palindromic wing primes (a.k.a. nearrepdigit palindromic primes) of the general form r*(10^k  1)/9 + (mr)*10^floor(k/2) where k is the number of digits (an odd number > 1), r is the repeated digit, and m (different from r) is the middle digit.


2



3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 35, 39, 41, 45, 47, 53, 59, 63, 65, 67, 73, 79, 81, 87, 91, 109, 117, 119, 123, 139, 155, 159, 171, 177, 181, 185, 189, 195, 209, 225, 231, 233, 237, 259, 321, 325, 337, 339, 355, 363, 371, 375, 397, 425, 453
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


REFERENCES

C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 199697, pp. 19.


LINKS

Table of n, a(n) for n=1..59.
P. De Geest, PWP's Sorted By Length


CROSSREFS

Cf. A077775A077798.
Sequence in context: A294748 A082453 A033041 * A033039 A322660 A161957
Adjacent sequences: A077794 A077795 A077796 * A077798 A077799 A077800


KEYWORD

nonn,base


AUTHOR

Patrick De Geest, Nov 16 2002


EXTENSIONS

Name edited by Jon E. Schoenfield, Nov 04 2018


STATUS

approved



