login
Irregular triangle read by rows: row n lists numbers in the range 1 to 2^(n-1) (inclusive) that have exactly n divisors.
13

%I #20 Jul 02 2017 10:53:33

%S 1,2,4,6,8,16,12,32,64,24,30,128,36,256,48,512,1024,60,72,96,2048,

%T 4096,192,8192,144,16384,120,210,216,384,32768,65536,180,288,768,

%U 131072,262144,240,432,1536,524288,576,1048576,3072,2097152,4194304,360,420

%N Irregular triangle read by rows: row n lists numbers in the range 1 to 2^(n-1) (inclusive) that have exactly n divisors.

%C There are A001055(n) different prime signatures with n divisors.

%C If a*b*c... is a factorization of n then the corresponding prime signature is p^(a-1)*q^(b-1)*r^(c-1)... etc.

%C The corresponding term of the n-th array is obtained by arranging a>b>c>... and p<q<r<... i.e. p = 2, q = 3 and r = 5 etc.

%C The n-th row contains A001055(n) terms. Taking the first term of each row gives A005179.

%D Amarnath Murthy, A note on the Smarandache Divisor sequences, Smarandache Notions Journal, Vol. 11, 1-2-3, Spring 2000.

%H T. D. Noe, <a href="/A077569/b077569.txt">Rows n=1..300, flattened</a>

%H Amarnath Murthy and Charles Ashbacher, <a href="http://www.gallup.unm.edu/~smarandache/MurthyBook.pdf">Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences</a>, Hexis, Phoenix; USA 2005. See Section 1.4, 1.12.

%e The row for n = 12 contains 60,72,96 and 2048, each having 12 divisors, with prime signature p^2qr, p^3q^2, p^5q, p^11.

%e The triangle begins

%e 1;

%e 2;

%e 4;

%e 6,8;

%e 16;

%e 12,32;

%e 64;

%e 24,30,128;

%e 36,256;

%e 48,512;

%e 1024;

%e 60,72,96,2048;

%e 4096;

%e 192,8192;

%e 144,16384;

%e 120,210,216,384,32768;

%e 65536;

%e 180,288,768,131072;

%e 262144;

%e 240,432,1536,524288;

%e 576,1048576;

%e 3072,2097152;

%e 4194304;

%e ...

%Y Cf. A001055, A005179, A077570, A122819.

%K nonn,tabf

%O 1,2

%A _Amarnath Murthy_, Nov 11 2002

%E More terms from _Ray Chandler_, Aug 12 2003

%E Improved definition from _T. D. Noe_, Aug 31 2008

%E Edited by _N. J. A. Sloane_, Sep 05 2008