login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = lcm(A051612(n), A065387(n)), where A051612(n) = sigma(n) - phi(n) and A065387(n) = sigma(n) + phi(n).
11

%I #19 Mar 25 2020 06:52:40

%S 0,4,6,45,10,70,14,209,133,154,22,96,26,90,32,897,34,495,38,850,220,

%T 598,46,884,561,270,638,748,58,320,62,3713,476,1330,72,8137,74,546,

%U 160,3922,82,756,86,832,918,2350,94,3780,495,8249,520,4514,106,2346,224

%N a(n) = lcm(A051612(n), A065387(n)), where A051612(n) = sigma(n) - phi(n) and A065387(n) = sigma(n) + phi(n).

%H Michael De Vlieger, <a href="/A077100/b077100.txt">Table of n, a(n) for n = 1..10000</a>

%F If p is prime, then a(p) = 2*p.

%t Table[LCM[#1 - #2, #1 + #2] & @@ {DivisorSigma[1, n], EulerPhi@ n}, {n, 55}] (* _Michael De Vlieger_, Dec 17 2016 *)

%o (PARI) a(n)=my(f=factor(n),e=eulerphi(f),s=sigma(f)); lcm(s+e,s-e) \\ _Charles R Greathouse IV_, Nov 27 2013

%Y Cf. A000010, A000203, A051612, A065387, A077099, A077101.

%K nonn

%O 1,2

%A _Labos Elemer_, Nov 06 2002

%E Edited by _Dean Hickerson_, Nov 07 2002