This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A076757 Primes of the form n + pi(n), that is, generated in A077510. 5

%I

%S 3,5,11,13,17,19,29,37,43,47,59,67,71,73,79,83,89,97,101,103,107,109,

%T 113,127,131,139,149,151,163,167,173,179,181,191,197,199,211,223,227,

%U 229,239,251,263,269,271,277,281,307,313,317,331,337,347

%N Primes of the form n + pi(n), that is, generated in A077510.

%H Indranil Ghosh, <a href="/A076757/b076757.txt">Table of n, a(n) for n = 1..6414</a>

%F a(n) = k+A000720(k) where k=A077510(n). - _R. J. Mathar_, Nov 19 2011

%p isA077510 := proc(n)

%p isprime(n+numtheory[pi](n)) ;

%p end proc:

%p A077510 := proc(n)

%p local a;

%p if n = 1 then

%p return 2;

%p else

%p for a from procname(n-1)+1 do

%p if isA077510(a) then

%p return a;

%p end if;

%p end do:

%p end if:

%p end proc:

%p A076757 := proc(n)

%p local a10 ;

%p a10 := A077510(n) ;

%p a10+numtheory[pi](a10) ;

%p end proc:

%p seq(A076757(n),n=1..40) ; # _R. J. Mathar_, Nov 19 2011

%t Select[Table[n + PrimePi[n], {n, 500}], PrimeQ] (* _T. D. Noe_, Nov 19 2011 *)

%o (MAGMA) [a: n in [1..400] | IsPrime(a) where a is (n + #PrimesUpTo(n))]; // _Vincenzo Librandi_, Jan 29 2017

%Y Cf. A000720, A077510.

%K nonn

%O 1,1

%A _David Garber_, Nov 13 2002

%E Name edited by _Michel Marcus_, Dec 30 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 15 17:41 EST 2019. Contains 330000 sequences. (Running on oeis4.)