OEIS A076336

RICHARD J. MATHAR

ABSTRACT. This is a summary of Don Reble's mail to the list.seqfan.eu mailing list on 9 Sep 2022 discussing absence of infinite primality chains of the form $n2^k + 1$ and $n + 2^k$. I am merely acting as a secretary here, writing this down; all credit is to Don Reble. (R. J. Mathar)

1. S3 sequence

The sequence S3 in [1, A076336] is defined by the set of integers n such that $n2^k + 1$ is prime for all k > 0. This set is empty, because for all n > 0 there is a k > 0 such that $n2^k + 1$ is composite.

Proof. There are two cases

• n+1 is not a power of 2. Therefore n+1 has an (at least one) odd prime factor q, and $n \equiv mq - 1$. Let $k \equiv q - 1$. Then

(1)
$$n2^k + 1 = (mq - 1)2^{q-1} + 1.$$

Reducing the factors of the right hand side (RHS) modulo q gives $mq-1 \equiv_q$ -1 and by Fermat's little theorem $2^{q-1} \equiv_q 1$ (see e.g. [1, A177023] for all odd q):

(2)
$$n2^k + 1 \equiv_q -1 \times 1 + 1 = 0.$$

A lower bound is

(3)
$$n2^k + 1 \ge (q-1)2^{3-1} + 1 = 4q - 3 > q.$$

So q is a proper factor of $n2^k+1$, and $n2^k+1$ is composite. • n+1 is a power of 2. So $n\equiv 2^m-1$ with m>0. Let $k\equiv m+2$ and therefore $2^{k} = 4(n+1)$. In consequence $n2^{k} + 1 = n \cdot 4(n+1) + 1 = (2n+1)^{2}$, composite.

2. S4 sequence

The sequence S4 in [1, A076336] is defined by the set of integers n such that $2^k + n$ is prime for all $k \ge 0$. This set is empty, because for all n > 0 there is a k > 0 such that $n + 2^k$ is composite.

Proof. There are two cases

Date: January 8, 2024.

2020 Mathematics Subject Classification. Primary 11N05; Secondary 11A41.

Key words and phrases. Sierpiński.

• n+1 is not a power of 2. Therefore n+1 has an (at least one) odd prime factor q, and $n \equiv mq - 1$. Let $k \equiv q - 1$. Then

$$(4) n+2^k = mq - 1 + 2^{q-1}.$$

Reducing the factors of the right hand side (RHS) modulo q gives with the same reasoning as in Section 1

(5)
$$n+2^k \equiv_q -1+1=0.$$

A lower bound is

(6)
$$n+2^k \ge q-1+2^{3-1} = q+3 > q.$$

So q is a proper factor of $n + 2^k$, and $n + 2^k$ is composite.

- n+1 is a power of 2. So $n \equiv 2^m 1$ with m > 0. There are 3 cases:
 - m is odd, $m \equiv 2r+1$. Let k = 3; then $n+2^k = 2^{2r+1}-1+2^3 = 2 \times 4^r+7$. Reducing the RHS modulo 3 gives $2 \times 4^r \equiv_3 2$, so $n+2^k \equiv_3 0$. A lower bound is

(7)
$$n+2^k \ge 2^1 - 1 + 2^3 = 9 > 3.$$

So 3 is a proper factor of $n + 2^k$, which is composite.

- m is even with an odd proper factor q: $m \equiv qr$. Let k = 1; then $n+2^k=2^{qr}-1+2^1=(2^r)^q+1$. The divisibility properties of cyclotomic polynomials are $s+1 \mid s^q+1$ for odd q, so 2^r+1 is a proper factor of $n+2^k$, which is composite.
- m is a power of 2, $m = 2^x$ and $n = 2^{2^x} 1$. The small and general subcases for x are:
 - * x = 0. 13 properly divides $2^{2^x} 1 + 2^6$. * x = 1. 13 properly divides $2^{2^x} 1 + 2^{10}$.

 - * $x = 2, 4, 6, \dots$ and even. Then $2^{2^x} \equiv_{13} 3$ and then 13 properly divides $2^{2^x} 1 + 2^7$ assuming k = 7.
 - * x = 3, 5, 7, 9... and odd. Then $2^{2^x} \equiv_{13} 9$ and then 13 properly divides $2^{2^x} 1 + 2^9$ assuming k = 9.

Here we used that in the sequence 2^{2^x} , $x = 2, 3, 4, 5, \dots$ each term is the square of the previous, which shows that $2^{2^x} \equiv_{13} = 3, 9, 3, 9, 3 \dots$ with period length 2 since $9^2 \equiv_{13} 3$.

References

1. O. E. I. S. Foundation Inc., The On-Line Encyclopedia Of Integer Sequences, (2023), https://oeis.org/. MR 3822822

Email address: mathar@mpia-hd.mpg.de

URL: https://www.mpia-hd.mpg.de/homes/mathar

Max-Planck Institute of Astronomy, Königstuhl 17, 69117 Heidelberg, Germany