OEIS A076336

RICHARD J. MATHAR

Abstract

This is a summary of Don Reble's mail to the list.seqfan.eu mailing list on 9 Sep 2022 discussing absence of infinite primality chains of the form $n 2^{k}+1$ and $n+2^{k}$. I am merely acting as a secretary here, writing this down; all credit is to Don Reble. (R. J. Mathar)

1. S3 SEQUENCE

The sequence S 3 in [1, A076336] is defined by the set of integers n such that $n 2^{k}+1$ is prime for all $k \geq 0$. This set is empty, because for all $n>0$ there is a $k>0$ such that $n 2^{k}+1$ is composite.

Proof. There are two cases

- $n+1$ is not a power of 2 . Therefore $n+1$ has an (at least one) odd prime factor q, and $n \equiv m q-1$. Let $k \equiv q-1$. Then

$$
\begin{equation*}
n 2^{k}+1=(m q-1) 2^{q-1}+1 \tag{1}
\end{equation*}
$$

Reducing the factors of the right hand side (RHS) modulo q gives $m q-1 \equiv_{q}$ -1 and by Fermat's little theorem $2^{q-1} \equiv_{q} 1$ (see e.g. [1, A177023] for all odd q):

$$
\begin{equation*}
n 2^{k}+1 \equiv_{q}-1 \times 1+1=0 \tag{2}
\end{equation*}
$$

A lower bound is

$$
\begin{equation*}
n 2^{k}+1 \geq(q-1) 2^{3-1}+1=4 q-3>q \tag{3}
\end{equation*}
$$

So q is a proper factor of $n 2^{k}+1$, and $n 2^{k}+1$ is composite.

- $n+1$ is a power of 2 . So $n \equiv 2^{m}-1$ with $m>0$. Let $k \equiv m+2$ and therefore $2^{k}=4(n+1)$. In consequence $n 2^{k}+1=n \cdot 4(n+1)+1=(2 n+1)^{2}$, composite.

2. S4 SEQUENCE

The sequence S 4 in [1, A076336] is defined by the set of integers n such that $2^{k}+n$ is prime for all $k \geq 0$. This set is empty, because for all $n>0$ there is a $k>0$ such that $n+2^{k}$ is composite.

Proof. There are two cases

[^0]- $n+1$ is not a power of 2 . Therefore $n+1$ has an (at least one) odd prime factor q, and $n \equiv m q-1$. Let $k \equiv q-1$. Then

$$
n+2^{k}=m q-1+2^{q-1}
$$

Reducing the factors of the right hand side (RHS) modulo q gives with the same reasoning as in Section 1

$$
n+2^{k} \equiv_{q}-1+1=0
$$

A lower bound is

$$
\begin{equation*}
n+2^{k} \geq q-1+2^{3-1}=q+3>q \tag{6}
\end{equation*}
$$

So q is a proper factor of $n+2^{k}$, and $n+2^{k}$ is composite.

- $n+1$ is a power of 2 . So $n \equiv 2^{m}-1$ with $m>0$. There are 3 cases:
$-m$ is odd, $m \equiv 2 r+1$. Let $k=3$; then $n+2^{k}=2^{2 r+1}-1+2^{3}=2 \times 4^{r}+7$. Reducing the RHS modulo 3 gives $2 \times 4^{r} \equiv_{3} 2$, so $n+2^{k} \equiv{ }_{3} 0$. A lower bound is

$$
n+2^{k} \geq 2^{1}-1+2^{3}=9>3
$$

So 3 is a proper factor of $n+2^{k}$, which is composite.
$-m$ is even with an odd proper factor $q: m \equiv q r$. Let $k=1$; then $n+2^{k}=2^{q r}-1+2^{1}=\left(2^{r}\right)^{q}+1$. The divisibility properties of cyclotomic polynomials are $s+1 \mid s^{q}+1$ for odd q, so $2^{r}+1$ is a proper factor of $n+2^{k}$, which is composite.
$-m$ is a power of $2, m=2^{x}$ and $n=2^{2^{x}}-1$. The small and general subcases for x are:

* $x=0.13$ properly divides $2^{2^{x}}-1+2^{6}$.
* $x=1$. 13 properly divides $2^{2^{x}}-1+2^{10}$.
$* x=2,4,6, \ldots$ and even. Then $2^{2^{x}} \equiv_{13} 3$ and then 13 properly divides $2^{2^{x}}-1+2^{7}$ assuming $k=7$.
* $x=3,5,7,9 \ldots$ and odd. Then $2^{2^{x}} \equiv_{13} 9$ and then 13 properly divides $2^{2^{x}}-1+2^{9}$ assuming $k=9$.
Here we used that in the sequence $2^{2^{x}}, x=2,3,4,5, \ldots$ each term is the square of the previous, which shows that $2^{2^{x}} \equiv_{13}=3,9,3,9,3 \ldots$ with period length 2 since $9^{2} \equiv{ }_{13} 3$.

References

1. O. E. I. S. Foundation Inc., The On-Line Encyclopedia Of Integer Sequences, (2023), https://oeis.org/. MR 3822822
Email address: mathar@mpia-hd.mpg.de
URL: https://www.mpia-hd.mpg.de/homes/mathar
Max-Planck Institute of Astronomy, Königstuhl 17, 69117 Heidelberg, Germany

[^0]: Date: January 8, 2024.
 2020 Mathematics Subject Classification. Primary 11N05; Secondary 11A41.
 Key words and phrases. Sierpiński.

