The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A075832 Let u(1) = u(2) = u(3) = u(4) = 1, u(n+4)*(n+4) = u(n+3)*(n+3)+u(n+2)*(n+2)+u(n+1)*(n+1)+u(n)*n; sequence gives values of n such that u(n) is an integer. 0

%I

%S 1,2,3,4,5,67,150,154,387,547,813,1034,1710,4994,13582,700427,1598953,

%T 2960411

%N Let u(1) = u(2) = u(3) = u(4) = 1, u(n+4)*(n+4) = u(n+3)*(n+3)+u(n+2)*(n+2)+u(n+1)*(n+1)+u(n)*n; sequence gives values of n such that u(n) is an integer.

%C No more terms up to n=15*10^6. - Lambert Klasen (Lambert.Klasen(AT)gmx.net) and _Robert G. Wilson v_, Aug 05 2005

%t a = {0, 1, 1, 1, 1}; Do[a = Rest[ Join[a, {((n - 4)a[[2]] + (n - 3)a[[3]] + (n - 2)a[[4]] + (n - 1)a[[5]])/n}]]; If[ IntegerQ[ Last[ a]], Print[n]], {n, 5, 2*10^6}] (* _Robert G. Wilson v_ *)

%o (PARI) v = [1,1,1,1];for(k=0,15,s=k*10^6+1;e=(k+1)*10^6;if(s==1,s=5);print(s," - ",e,":");for(n=s,e,v[(n-1)%4+1]=((n-4)*v[(n-1)%4+1]+(n-3)*v[(n)%4+1]+(n-2)*v[(n+1)%4+1]+(n-1)*v[(n+2)%4+1])/n;if(denominator(v[(n-1)%4+1])==1,print1(n,",")));print()) \\ (Klasen)

%Y Cf. A075770.

%K nonn

%O 1,2

%A _Benoit Cloitre_, Oct 14 2002

%E Corrected and extended by Lambert Klasen (Lambert.Klasen(AT)gmx.net) and _Robert G. Wilson v_, Aug 05 2005

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 02:12 EST 2021. Contains 349435 sequences. (Running on oeis4.)