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Define the sequence (u(n, x) : n ≥ 1) of rational functions of x by

u(1, x) = x and u(n+ 1, x) =
n2

u(n, x)
+ 1 for n ≥ 1.

In this note, we prove various conjectures about the above rational sequence related to the OEIS
sequences A075827, A075828, A075829, and A075830. These sequences were originally defined by
Benoit Cloitre in 2002. Let

α(n) = A024167(n) = n!
n∑
k=1

(−1)k+1

k
and β(n) = A024168(n) = n!

n∑
k=2

(−1)k

k
. (1)

Theorem 1. For each integer n ≥ 2, we have

u(n, x) =
n
(∑n

k=1
(−1)k+1

k

)
x+ n

(∑n
k=2

(−1)k
k

)
(∑n−1

k=1
(−1)k+1

k

)
x+

(∑n−1
k=2

(−1)k
k

) (2)

=
A024167(n)x+A024168(n)

A024167(n− 1)x+A024168(n− 1)
. (3)

Proof. Equation (3) follows from equation (2) by multiplying the numerator and denominator of
the fraction in (2) by (n− 1)!.

We prove equation (2) by induction on n. For n = 2, we have

u(2, x) =
12

u(1, x)
+ 1 =

x+ 1

x
=

2
(
1− 1

2

)
x+ 2

(
1
2

)
(1)x+ 0

,

and the base case for induction has been established.
Next we proceed with the induction step. Assume equation (2) holds for an arbitrary n ≥ 2.

Then

u(n+ 1, x) =
n2

u(n, x)
+ 1 =

n
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k=1
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k

)
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(−1)k
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k
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)
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k=1
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)
x+
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(−1)k
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=
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)
x+ (n+ 1)
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(−1)k
k

)
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k

) .

Thus, equation (2) holds for n+ 1 as well, and this completes the inductive step.
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Lemma 2. For each integer n ≥ 2, we have

gcd(α(n), α(n− 1)) = gcd(β(n), β(n− 1)) (4)

= gcd(α(n− 1), (n− 1)!) (5)

= gcd(β(n− 1), (n− 1)!) = gcd(α(n− 1), β(n− 1)), (6)

where the sequences α and β are defined in (1).

Proof. Fix integer n ≥ 2. It is trivial to establish the following identities:

α(n)− nα(n− 1) = (n− 1)!(−1)n+1 = −β(n) + nβ(n− 1), (7)

α(n− 1) + β(n− 1) = (n− 1)! and α(n) + β(n) = n!. (8)

Let α∗ = gcd(α(n), α(n − 1)) and β∗ = gcd(β(n), β(n − 1)). Identities (7) imply that α∗|(n − 1)!
and β∗|(n− 1)!. Using these and identities (8), we get the following:

(α∗|α(n− 1) & α∗|(n− 1)!) =⇒ α∗|β(n− 1) and (α∗|α(n) & α∗|(n− 1)!) =⇒ α∗|β(n).

It follows that α∗|β∗. In a similar way, we can prove that β∗|α∗. It follows that α∗ = β∗.
Now let α∗∗ = gcd(α(n − 1), (n − 1)!) and β∗∗ = gcd(β(n − 1), (n − 1)!). From equations (7),

we get that α∗∗|α(n) and β∗∗|β(n). But trivially we have α∗∗|α(n− 1) and β∗∗|β(n− 1). Thus,

α∗∗| gcd(α(n), α(n− 1)) = α∗ and β∗∗| gcd(β(n), β(n− 1)) = β∗.

But from equations (7), we also get α∗|(n− 1)! and β∗|(n− 1)!. But we trivially have α∗|α(n− 1)
and β∗|β(n− 1). Hence

α∗| gcd((n− 1)!, α(n− 1)) = α∗∗ and β∗| gcd((n− 1)!, β(n− 1)) = β∗∗.

Combining all of the above results, we conclude that α∗ = α∗∗ = β∗∗ = β∗.
Finally, let γ∗ = gcd(α(n − 1), β(n − 1)). From the first equation in (8), we get γ∗|(n − 1)!.

Since also γ∗|α(n− 1), we conclude that γ∗| gcd(α(n− 1), (n− 1)!) = α∗∗. From the first equation
in (8), we also have α∗∗|β(n − 1). Since α∗∗|α(n − 1), we get α∗∗| gcd(β(n − 1), α(n − 1)) = γ∗.
Thus, γ∗ = α∗∗, and this finishes the proof of the lemma.

We let γ(n) denote the sequence described in equations (4), (5), and (6) of Lemma 2; that is,

γ(n) = A334958(n− 1) = gcd(α(n), α(n− 1)) = gcd(β(n), β(n− 1))

= gcd(α(n− 1), (n− 1)!) = gcd(β(n− 1), (n− 1)!)

= gcd(α(n− 1), β(n− 1)) for n ≥ 2.

Define now the sequences v1, v2, v3, v4 as follows:

v1(1) = 1 and v1(n) =
α(n)

γ(n)
for n ≥ 2;

v2(1) = 0 and v2(n) =
β(n)

γ(n)
for n ≥ 2;

v3(1) = 0 and v3(n) =
α(n− 1)

γ(n)
for n ≥ 2;

v4(1) = 1 and v4(n) =
β(n− 1)

γ(n)
for n ≥ 2.
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We shall prove that

v1 = A075827, v2 = A075828, v3 = A075830, v4 = A075829.

This follows immediately from the following theorem.

Theorem 3. For all integer n ≥ 1,

u(n, x) =
v1(n)x+ v2(n)

v3(n)x+ v4(n)
. (9)

Also, v1(n) + v2(n) = n(v3(n) + v4(n)) and gcd(v3(n), v4(n)) = 1 for n ≥ 1. This means that the
rational function above is in lowest terms.

Proof. Equation (9) is obvious for n = 1. Assume n ≥ 2. From equations (1) and (3), we have

u(n, x) =
α(n)x+ β(n)

α(n− 1)x+ β(n− 1)
=

α(n)
γ(n)x+ β(n)

γ(n)

α(n−1)
γ(n) x+ β(n−1)

γ(n)

=
v1(n)x+ v2(n)

v3(n)x+ v4(n)
.

This proves equation (9) when n ≥ 2.
For n = 1, we have v1(n) + v2(n) = 1 + 0 = 1 = 1(0 + 1) = n(v3(n) + v4(n)). Assume now

n ≥ 2. From equations (8), we get

v1(n) + v2(n) =
α(n) + β(n)

γ(n)
=

n!

γ(n)
=
n(α(n− 1) + β(n− 1))

γ(n)
= n(v3(n) + v4(n)).

Since γ(n) = gcd(α(n− 1), β(n− 1)), we get

gcd(v3(n), v4(n)) = gcd

(
α(n− 1)

γ(n)
,
β(n− 1)

γ(n)

)
= 1.

This finishes the proof of the theorem.

Next we give some properties of the sequence (γ(n) : n ≥ 2).

Lemma 4. For integer n ≥ 2, γ(n)|γ(n+ 1).

Proof. From the equation α(n)− nα(n− 1) = (n− 1)!(−1)n+1 we get that

γ(n) = gcd(a(n− 1), (n− 1)!)|a(n).

But trivially we have γ(n)|n!, so γ(n)| gcd(a(n), n!) = γ(n+ 1).

Lemma 5. For each integer n ≥ 2, if n is prime, then γ(n) = γ(n+ 1).

Proof. Assume n is prime. By Lemma 4, γ(n)|γ(n+ 1).
Assume now n|a(n). From the equation α(n) − nα(n − 1) = (n − 1)!(−1)n+1 we get that

n|(n − 1)!, a contradiction. Thus, gcd(a(n), n) = 1. This together with γ(n + 1) = gcd(α(n), n!)
imply that γ(n+ 1)|(n− 1)!. But then γ(n+ 1)|nα(n− 1), which implies γ(n+ 1)|α(n− 1) (since
is n is prime with no common factor with γ(n+ 1)). Thus

γ(n+ 1)| gcd((n− 1)!, α(n− 1)) = γ(n).

Hence, γ(n) = γ(n+ 1).
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We believe the converse of Lemma 5 is also true, but we have not been able to prove it.

Conjecture 6. For each integer n ≥ 2, if γ(n) = γ(n+ 1), then n is prime.

A consequence of Lemma 5 and Conjecture 6 is the following result.

Corollary 7. If n = 1 or n is prime, then v1(n) = v3(n+ 1), i.e., A075827(n) = A075830(n+ 1).
If Conjecture 6 is true, then the converse is also true.

Proof. If n = 1, then v1(1) = 1 = v3(2). If n is prime, then by Lemma 5 we have γ(n) = γ(n+ 1).
Thus,

v1(n) =
α(n)

γ(n)
=

α(n)

γ(n+ 1)
= v3(n+ 1).

Assume now Conjecture 6 is true and v1(n) = v3(n + 1). If n > 1, then α(n)
γ(n) = α(n)

γ(n+1) , and so

γ(n) = γ(n+ 1). By Conjecture 6, n is prime.

Next we prove the claims made by N. J. A. Sloane and Alexander Adamchuk in 2006 about the
sequences v3 = A075830 and v4 = A075829, respectively.

Theorem 8. Let H∗(n) =
∑n

k=1
(−1)k+1

k be the alternating harmonic number. Then, for n ≥ 2,

v3(n) = numerator(H∗(n− 1)) = A058313(n− 1) and

v4(n) = denominator(H∗(n− 1))− numerator(H∗(n− 1)) = A058312(n− 1)−A058313(n− 1).

Proof. For n ≥ 2, we have

v3(n) =
α(n− 1)

γ(n)
=

α(n− 1)

gcd(α(n− 1), (n− 1)!)

= numerator

(
α(n− 1)

(n− 1)!

)
= numerator

(
(n− 1)!H∗(n− 1)

(n− 1)!

)
= numerator(H∗(n− 1)).

Similarly, for n ≥ 2,

v4(n) =
β(n− 1)

γ(n)
=

β(n− 1)

gcd(β(n− 1), (n− 1)!)

= numerator

(
β(n− 1)

(n− 1)!

)
= numerator

(
n−1∑
k=2

(−1)k

k

)
= numerator (1−H∗(n− 1)) .

But if H∗(n−1) = a
b , where a and b are integers with gcd(a, b) = 1 and b 6= 0, then 1−H∗(n−1) =

b−a
b with gcd(b− a, b) = 1. Thus, v4(n) = denominator(H∗(n− 1))− numerator(H∗(n− 1)).

In the spirit of Sloane and Adamchuk’s formulas, we now give formulas for sequences v1 and v2.

4

http://oeis.org/A075827
http://oeis.org/A075830
http://oeis.org/A075830
http://oeis.org/A075829
http://oeis.org/A058313
http://oeis.org/A058312
http://oeis.org/A058313


Theorem 9. Let H∗(n) =
∑n

k=1
(−1)k+1

k be the alternating harmonic number. Then, for n ≥ 2,

v1(n) = numerator

(
nH∗(n)

H∗(n− 1)

)
and v2(n) = numerator

(
n(1−H∗(n))

1−H∗(n− 1)

)
,

where ∞ is defined as 1
0 in lowest terms.

Proof. For integer n ≥ 2, we have

v1(n) =
α(n)

gcd(α(n), α(n− 1))

= numerator

(
α(n)

α(n− 1)

)
= numerator

(
n!H∗(n)

(n− 1)!H∗(n− 1)

)
= numerator

(
nH∗(n)

H∗(n− 1)

)
.

Similarly,

v2(n) =
β(n)

gcd(β(n), β(n− 1))

= numerator

(
β(n)

β(n− 1)

)
= numerator

(
n!(1−H∗(n))

(n− 1)!(1−H∗(n− 1))

)
= numerator

(
n(1−H∗(n))

1−H∗(n− 1)

)
.

(For the case n = 2, β(1) = 0 and β(2) = 1 with gcd(β(2), β(1)) = 1. In this case, the numerator

of β(2)
β(1) = 1

0 =∞ is defined to be 1.) This completes the proof of the theorem.

Define the sequences (A(n) : n ≥ 1) and (B(n) : n ≥ 1) by

A(1) =∞, A(n+ 1) =
n2

A(n)
+ 1 for n ≥ 1 and

B(1) = 0, B(n+ 1) =
n2

B(n)
+ 1 for n ≥ 1,

where 1
∞ = 0 and 1

0 =∞. (We then have A(2) = 1, B(2) =∞, and B(3) = 1.)

Theorem 10. For n ≥ 1,

v1(n) = numerator(A(n)), v2(n) = numerator(B(n)),

v3(n) = denominator(A(n)), v4(n) = denominator(B(n)),

where ∞ in lowest terms is defined as 1
0 .

Proof. Note that, for each n ≥ 1,

A(n) = u(n,∞) = lim
x→∞

u(n, x) and B(n) = u(n, 0).
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It follows from equation (9) in Theorem 3 that, for each n ≥ 1,

A(n) =
v1(n)

v3(n)
and B(n) =

v2(n)

v4(n)
. (10)

For n = 1, we clearly have gcd(v1(1), v3(1)) = gcd(1, 0) = 1 and gcd(v2(1), v4(1)) = gcd(0, 1) = 1.
For n ≥ 2,

gcd(v1(n), v3(n)) = gcd

(
α(n)

gcd(α(n), α(n− 1))
,

α(n− 1)

gcd(α(n), α(n− 1))

)
= 1 and

gcd(v2(n), v4(n)) = gcd

(
β(n)

gcd(β(n), β(n− 1))
,

β(n− 1)

gcd(β(n), β(n− 1))

)
= 1.

This means that the fractions in equations (10) are in lower terms. The four equations in the
statement of the theorem follow immediately.

We finally prove Benoit Cloitre’s limiting result for the sequence (u(n, x) : n ≥ 1).

Theorem 11. For any real number x 6= 1− 1
log 2 , we have

lim
n→∞

|u(n, x)− u(n, 1)| = lim
n→∞

|u(n, x)− n| =
∣∣∣∣ x− 1

1 + (x− 1) log 2

∣∣∣∣ .
Proof. It is easy to see that

u(n, x)− n =
(−1)n+1(x− 1)(∑n−1

k=1
(−1)k+1

k

)
x+ 1−

∑n−1
k=1

(−1)k+1

k

.

Taking absolute values on both sides of the above equality and letting n→∞, we get the result in
the theorem.
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