%I #17 Jul 03 2021 10:56:29
%S 7,12,13,21,25,28,30,45,47,72,81,100,104,106,107,108,114,123,133,143,
%T 150,151,152,162,171,172,180,181,191,200,207,214,230,239,249,259,269,
%U 278,279,288,298,312,314,319,322,333,340,342,344,359,397,400,403,405
%N Sum-of-digits of k appears somewhere in prime(k).
%C Sums-of-digits of m are in A075697, primes are in A075698.
%H Michael S. Branicky, <a href="/A075696/b075696.txt">Table of n, a(n) for n = 1..10000</a>
%e 12 is a term because sum-of-digits(12)=1+2=3 appears in prime(12)=37.
%e 191 is a term because sum-of-digits(191)=1+9+1=11 appears in prime(191)=1153.
%t Select[Range@500,StringContainsQ[ToString@Prime@#,ToString@Total@IntegerDigits@#]&] (* _Giorgos Kalogeropoulos_, Jul 03 2021 *)
%o (Python)
%o from sympy import prime, primerange
%o def auptopn(lim):
%o alst = []
%o for k, pk in enumerate(primerange(2, prime(lim)+1), start=1):
%o if str(sum(map(int, str(k)))) in str(pk): alst.append(k)
%o return alst
%o print(auptopn(405)) # _Michael S. Branicky_, Jul 03 2021
%Y Cf. A075697, A075698.
%K easy,nonn,base
%O 1,1
%A _Zak Seidov_, Sep 26 2002
%E Corrected and extended by _Sascha Kurz_, Jan 30 2003