login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest product (n+1)(n+2)...(n+k) that is divisible by the product of all the primes up to n.
4

%I #10 May 18 2015 15:58:36

%S 1,12,120,30,30240,5040,17297280,2162160,240240,360360,28158588057600,

%T 2346549004800,64764752532480000,4626053752320000,308403583488000,

%U 19275223968000,830034394580628357120000,46113021921146019840000

%N Smallest product (n+1)(n+2)...(n+k) that is divisible by the product of all the primes up to n.

%H Reinhard Zumkeller, <a href="/A075366/b075366.txt">Table of n, a(n) for n = 1..300</a>

%F If p <= n < q, where p and q are consecutive primes, then a(n) = (2p)!/n!, unless n=10.

%t a75365[n_] := Module[{div, k, pr}, div=Times@@Prime/@Range[PrimePi[n]]; For[k=0; pr=1, True, k++; pr*=n+k, If[Mod[pr, div]==0, Return[k]]]]; a[n_] := Times@@Range[n+1, n+a75365[n]]

%o (Haskell)

%o a075366 n = a075366_list !! (n-1)

%o a075366_list = 1 : f 2 1 a000040_list where

%o f x pp ps'@(p:ps)

%o | p <= x = f x (p * pp) ps

%o | otherwise = g $ dropWhile (< pp) $ scanl1 (*) [x+1, x+2 ..]

%o where g (z:zs) | mod z pp == 0 = z : f (x + 1) pp ps'

%o | otherwise = g zs

%o -- _Reinhard Zumkeller_, May 18 2015

%Y Cf. A075365, A075367, A075368.

%Y Cf. A000040.

%K nice,nonn

%O 1,2

%A _Amarnath Murthy_, Sep 20 2002

%E Edited by _Dean Hickerson_, Oct 28 2002