The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A075261 y-value of the solution (x,y,z) to 3/(2n+1) = 1/x + 1/y + 1/z satisfying 0 < x < y < z, odd x, y, z and having the largest z-value. The x and z components are in A075260 and A075262. 3

%I #4 Mar 30 2012 17:22:26

%S 5,11,9,15,33,21,17,67,33,69,113,51,87,171,77,115,241,99,155,323,129,

%T 63,417,171,265,523,201,315,641,243,375,771,299,445,913,339,525,1067,

%U 393,609,1233,465,297,1411,513,785,1601,579,885,1803,651,999,2017,723

%N y-value of the solution (x,y,z) to 3/(2n+1) = 1/x + 1/y + 1/z satisfying 0 < x < y < z, odd x, y, z and having the largest z-value. The x and z components are in A075260 and A075262.

%C See A075259 for more details.

%t m=3; For[xLst={}; yLst={}; zLst={}; n=5, n<=200, n=n+2, cnt=0; xr=n/m; If[IntegerQ[xr], x=xr+1, x=Ceiling[xr]]; While[yr=1/(m/n-1/x); If[IntegerQ[yr], y=yr+1, y=Ceiling[yr]]; cnt==0&&y>x, While[zr=1/(m/n-1/x-1/y); cnt==0&&zr>y, If[IntegerQ[zr], z=zr; If[OddQ[x y z], cnt++; AppendTo[xLst, x]; AppendTo[yLst, y]; AppendTo[zLst, z]]]; y++ ]; x++ ]; If[cnt==0, AppendTo[xLst, 0]; AppendTo[yLst, 0]; AppendTo[zLst, 0]]]; yLst

%Y Cf. A075259, A075260, A075262.

%K nice,nonn

%O 2,1

%A _T. D. Noe_, Sep 10 2002

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 31 23:42 EDT 2023. Contains 363068 sequences. (Running on oeis4.)