Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Nov 16 2014 03:10:03
%S 0,1,2,1,1,5,2,1,3,5,1,12,8,3,3,5,14,8,6,4,7,20,1,9,6,3,22,11,3,11,31,
%T 24,5,10,3,11,16,20,6,23,2,35,7,3,35,15,25,16,47,8,12,54,3,9,8,4,42,
%U 41,22,11,8,25,8,15,5,61,92,3,7,16,28,47,37,7,10,40,23,13,11,29,11,75,3
%N Number of solutions (x,y,z) to 3/(2n+1) = 1/x + 1/y + 1/z satisfying 0 < x < y < z and odd x, y, z.
%C _N. J. A. Sloane_ and _R. H. Hardin_ conjecture a(n) > 0 for n > 1. All of the solutions can be printed by removing the comment symbols from the Mathematica program. For the solution (x,y,z) having the largest z value, see (A075260, A075261, A075262). See A073101 for the 4/n conjecture due to Erdős and Straus.
%C The conjecture was proved by Thomas Hagedorn and Gary Mulkey. - _T. D. Noe_, Jan 03 2005
%D R. K. Guy, Unsolved Problems in Theory of Numbers, Springer-Verlag, Third Edition, 2004, D11.
%H T. D. Noe, <a href="/A075259/b075259.txt">Table of n, a(n) for n=1..499</a>
%H Thomas R. Hagedorn, <a href="http://www.jstor.org/stable/2589381">A proof of a conjecture on Egyptian fractions</a>, Amer. Math Monthly, 107 (2000), 62-63.
%H Stan Wagon, <a href="http://compgeom.cs.uiuc.edu/~jeffe/wagon/s848.html">Problem of the Week 848: An Odd Egyptian Puzzle</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EgyptianFraction.html">Egyptian Fraction</a>
%e a(3)=2 because there are two solutions: 3/7 = 1/3+1/11+1/231 and 3/7 = 1/3+1/15+1/35.
%t m = 3; For[lst = {}; n = 3, n <= 200, n = n + 2, cnt = 0; xr = n/m; If[IntegerQ[xr], xMin = xr + 1, xMin = Ceiling[xr]]; If[IntegerQ[3xr], xMax = 3xr - 1, xMax = Floor[3xr]]; For[x = xMin, x <= xMax, x++, yr = 1/(m/n - 1/x); If[IntegerQ[yr], yMin = yr + 1, yMin = Ceiling[yr]]; If[IntegerQ[2yr], yMax = 2yr + 1, yMax = Ceiling[2yr]]; For[y = yMin, y <= yMax, y++, zr = 1/(m/n - 1/x - 1/y); If[y > x && zr > y && IntegerQ[zr], z = zr; If[OddQ[x y z], cnt++;(*Print[n, " ", x, " ", y, " ", z]*)]]]]; AppendTo[lst, cnt]]; lst
%Y Cf. A073101, A075260, A075261, A075262.
%K nice,nonn
%O 1,3
%A _T. D. Noe_, Sep 10 2002
%E More terms from _T. D. Noe_, Oct 15 2002