%I #6 Jun 17 2023 08:00:26
%S 5,4,6,4,6,4,0,-24,-82,-212,-454,-876,-1548,-2544,-3858,-5276,-6050,
%T -4348,3744,25768,75206,174444,357858,673076,1175972,1909904,2851270,
%U 3789508,4089238,2255044,-4809280,-22969880,-62544962,-140412180,-281990486,-521513324,-896946156,-1432099056
%N Binomial transform of pentanacci numbers A074048: a(n)=Sum((-1)^k*Binomial(n,k)*A074048(k),(k=0,..,n)).
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (4, -5, 0, 5, -4).
%F a(n)=4a(n-1)-5a(n-2)+5a(n-4)-4a(n-5), a(0)=5, a(1)=4, a(2)=6, a(3)=4, a(4)=6. G.f.: (5-16x+15x^2-5x^4)/(1-4x+5x^2-5x^4+4x^5).
%t CoefficientList[Series[(5-16x+15x^2-5x^4)/(1-4x+5x^2-5x^4+4x^5), {x, 0, 40}], x]
%Y Cf. A074048.
%K easy,sign
%O 0,1
%A Mario Catalani (mario.catalani(AT)unito.it), Sep 08 2002