login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Direction from n-th perfect power to closest prime (-1 if down, 1 if up, 0 if two primes are closest).
0

%I #7 Aug 28 2018 19:36:18

%S -1,0,1,0,-1,1,-1,1,-1,1,0,0,-1,-1,-1,1,0,1,-1,1,0,1,-1,-1,0,-1,1,-1,

%T 0,-1,1,1,-1,0,-1,1,-1,1,-1,-1,1,1,0,1,1,-1,1,1,-1,-1,-1,0,0,1,1,1,-1,

%U -1,1,1,-1,1,-1,1,-1,0,-1,1,1,-1,1,1,-1,-1,1,1,-1,0,1,-1,1,0,-1,-1,-1,1,1,-1,1,1,0,-1,-1,1,-1,1,1,0,-1,1,-1,1,1,1,-1

%N Direction from n-th perfect power to closest prime (-1 if down, 1 if up, 0 if two primes are closest).

%F Sign(n-th perfect power - closest prime) or 0 if two primes are closest.

%e The 7th perfect power (A001597) is 27. The closest prime to 27 is 29. sign(27-29)=-1, so a(7)=-1. The 11th perfect power is 64. There is no single closest prime to 64, since two primes are closest, namely 61 and 67, so a(11)=0.

%t NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; PrevPrim[n_] := Block[{k = n - 1}, While[ !PrimeQ[k], k-- ]; k]; pp = Select[ Range[10000], !PrimeQ[ # ] && Apply[ GCD, Last[ Transpose[FactorInteger[ # ]]]] > 1 & ]; Join[{-1}, Sign[ Table[ NextPrim[pp[[n]]] - pp[[n]], {n, 1, 124}] - Table[ pp[[n]] - PrevPrim[pp[[n]]], {n, 1, 124}]]]

%t ppcp[n_]:=Module[{a=NextPrime[n,-1],b=NextPrime[n]},Which[n-a==b-n,0,n-a < b-n,1,True,-1]]; ppcp/@Join[{1},Select[Range[8000],GCD@@FactorInteger[#][[All,2]]>1&]] (* _Harvey P. Dale_, Aug 28 2018 *)

%Y Cf. A001597.

%K sign

%O 1,1

%A _Neil Fernandez_, Oct 12 2002

%E Edited by _Robert G. Wilson v_, Oct 13 2002