%I #13 Oct 30 2018 10:31:02
%S 5,23,101,109,263,211,251,757,1367,941,2053,1901,911,2347,1861,1187,
%T 1249,1303,2273,1433,1493,1553,2777,2927,44843,26699,65713,4597,14159,
%U 8069,18439,5197,8819,9011,9277,9419,33599,53381,6761,6823,11497,7013
%N Prime sum of nth group of successive primes in A073684.
%C Partition the sequence of primes into groups so that the sum of the terms in each group is prime: {2, 3}, {5, 7, 11}, {13, 17, 19, 23, 29}, {31, 37, 41}, {43, 47, 53, 59, 61}, {67, 71, 73}, {79, 83, 89}, {97, 101, 103, 107, 109, 113, 127}, {131, 137, 139, 149, 151, 157, 163, 167, 173}, {179, 181, 191, 193, 197}, ...; A073684(n) is the number of terms in nth group; A073682(n) is the sum of terms in nth group; A073683(n) is the first term in nth group; A077279(n) is the last term in nth group.
%H Zak Seidov, <a href="/A073682/b073682.txt">Table of n,a(n) for n = 1..3000</a>
%H Zak Seidov, <a href="/A073682/a073682.txt">Table of n, A073682(n), A073683(n), A073684(n), A077279(n) for n = 1..3000</a>
%e a(1)=5 because sum of first two primes 2+3 = 5 is prime;
%e a(2)=23 because sum of next three primes 5+7+11 = 23 is prime;
%e a(3)=101 because sum of next five primes 13+17+19+23+29 = 101 is prime.
%Y Cf. A073683, A073684, A077279.
%K nonn
%O 1,1
%A _Amarnath Murthy_, Aug 11 2002
%E More terms from Gabriel Cunningham (gcasey(AT)mit.edu), Apr 10 2003
