login
Counting factor 3 in the first n squarefree numbers.
5

%I #19 Feb 24 2021 03:50:39

%S 0,0,1,1,2,2,2,2,2,2,3,3,3,4,4,4,4,4,5,5,6,6,6,6,6,7,7,8,8,8,8,9,9,9,

%T 10,10,10,10,10,10,11,11,12,12,12,12,12,12,13,13,13,13,13,13,14,14,14,

%U 15,15,15,15,15,16,16,17,17,17,17,17,18,18,19,19,19,19,19,20,20,21,21

%N Counting factor 3 in the first n squarefree numbers.

%H Gheorghe Coserea, <a href="/A072748/b072748.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) ~ n/4. - _Amiram Eldar_, Feb 24 2021

%e The first 10 squarefree numbers are: 1, 2, 3, 5, 6=2*3, 7, 10=2*5, 11, 13 and 14=2*7: 3 and 6 are divisible by 3, therefore a(10)=2.

%t Accumulate[If[Divisible[#, 3], 1, 0]&/@Select[Range[100], SquareFreeQ]] (* _Vincenzo Librandi_, Aug 23 2015 *)

%o (PARI)

%o n = 80; k = 0; bag = List(); a = vector(n);

%o until(n == 0, k++; if (issquarefree(k), listput(bag, k); n--));

%o for (i=2, #bag, a[i] = a[i-1] + (bag[i] % 3 == 0));

%o print(a); \\ _Gheorghe Coserea_, Aug 22 2015

%Y Cf. A005117, A072747, A072749, A072750, A072751.

%K nonn

%O 1,5

%A _Reinhard Zumkeller_, Jul 08 2002

%E Name clarified by _Gheorghe Coserea_, Aug 22 2015