login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Largest k such that EulerPhi(k) = 10^n.
3

%I #26 Feb 09 2022 18:42:23

%S 2,22,250,3750,41250,414150,4166250,42281250,438281250,4400343750,

%T 44266406250,449238281250,4510352343750,45373066406250,

%U 455545586718750,4555455867187500,45555287544813750,455552875448137500,4566844506855468750,45668445068554687500

%N Largest k such that EulerPhi(k) = 10^n.

%H Ray Chandler, <a href="/A072076/b072076.txt">Table of n, a(n) for n = 0..1000</a>

%H Max A. Alekseyev, <a href="https://www.emis.de/journals/JIS/VOL19/Alekseyev/alek5.html">Computing the Inverses, their Power Sums, and Extrema for Euler's Totient and Other Multiplicative Functions</a>. Journal of Integer Sequences, Vol. 19 (2016), Article 16.5.2

%F a(n) = Max{k; A000010(k) = 10^n}.

%e n=3: a(3)=3750 because InvPhi(1000) = {1111, 1255, 1375, 1875, 2008, 2222, 2500, 2510, 2750, 3012, 3750}.

%Y Cf. A000010, A014197, A014573, A072074, A072075, A110076.

%K nonn

%O 0,1

%A _Labos Elemer_, Jun 13 2002

%E More terms from _Max Alekseyev_, Apr 26 2010