%I #4 Mar 30 2012 17:30:44
%S 1,15,1339,6069,28879,40941,66183,77707,1359489,1651008,7923801,
%T 16146690,22400968
%N a(1)=1, a(n) is the smallest integer > a(n-1) such that the sum of elements of the simple continued fraction for S(n)=1/a(1)+1/a(2)+...+1/a(n) equals n^4.
%e 1/a(1)+1/a(2)+1/a(3)+1/a(4) = (1+1/15+1/1339+1/6069) which continued fraction is {1, 14, 1, 3, 1, 16, 3, 1, 1, 1, 4, 210} and 1+14+1+3+1+16+3+1+1+1+4+210 = 256 = 4^4.
%t a[1] = 1; a[n_] := a[n] = (s = Sum[1/a[i], {i, 1, n - 1}]; While[Plus @@ ContinuedFraction[s + 1/k] != n^4, k++ ]; k); k = 1; Do[ Print[ a[n]], {n, 1, 14}]
%o (PARI) s=1; t=1; for(n=2,14,s=s+1/t; while(abs(n^4+1-sum(i=1,length(contfrac(s+1/t)), component(contfrac(s+1/t), i)))>0,t++); print1(t,","))
%Y Cf. A071183.
%K nonn
%O 1,2
%A _Robert G. Wilson v_, Jun 17 2002