A condition on the odd divisors of n for the symmetric representation of $\sigma(\mathrm{n})$ to have an odd number of parts.

Hartmut F. W. Höft, 2018-02-12
Notations and Terminology
$\mathrm{n}=2^{m} \times \mathrm{q}, \mathrm{m} \geq 0, \mathrm{q}$ odd.
$r_{n}=\left\lfloor\frac{1}{2}(\sqrt{8 n+1}-1)\right\rfloor$
$D_{n}=\left\{\mathrm{s}: \mathrm{s} \mid \mathrm{q}\right.$ and $\left.\mathrm{s} \times 2^{m+1}>r_{n}\right\}$
$E_{n}=\left\{\mathrm{s}: \mathrm{s} \mid \mathrm{q}\right.$ and $\left.\mathrm{s} \times 2^{m+1} \leq r_{n}\right\}$
$d_{n}=\min \left(D_{n}\right)$ and $e_{n}=\max \left(E_{n}\right)$ when the respective sets are not empty.
We use SRS for the phrase "symmetric representation of sigma"; $\operatorname{SRS}(\sigma(\mathrm{n}))$ denotes its area (which equals $\sigma(\mathrm{n})$, see A280851), and \#SRS $(\sigma(\mathrm{n})$) denotes the "number of parts of the symmetric representation of $\sigma(\mathrm{n})$ ".

Theorem

$D_{n} \neq \varnothing$ is equivalent to $\# \operatorname{SRS}(\sigma(\mathrm{n}))$ is odd.

Proof

Suppose $D_{n} \neq \varnothing$. If $E_{n}=\varnothing$ then $1 \in D_{n}$ and 1 's in row n of A 237048 occur only at odd indices so that all entries in row n of A249223 are positive, i.e. $\# S R S(\sigma(n))=1$. Let $E_{n} \neq \varnothing$ and suppose $e_{n} \times 2^{m+1}<d_{n}$. Then the number of 1's at odd indices equals the number of 1's at even indices for indices less than d_{n} so that there is a 0 at index $d_{n}-1$ in row n of A237048 as well as A249223. Therefore, all indices from d_{n} through r_{n} in row n of A249223 are positive defining a part of SRS that crosses the diagonal which implies that $\# \operatorname{SRS}(\sigma(\mathrm{n}))$ is odd. Finally, if $E_{n} \neq \varnothing$ and $d_{n}<e_{n} \times 2^{m+1} \leq r_{n}$ suppose that $s_{1}<s_{2}<\ldots<s_{k}=$ $e_{n}, k \geq 1$, are the elements in E_{n} satisfying

$$
s_{1}<s_{2}<\ldots<s_{k}=e_{n}<d_{n}<s_{1} \times 2^{m+1}<\ldots<s_{k} \times 2^{m+1}=e_{n} \times 2^{m+1} \leq r_{n} .
$$

Since odd divisors $s_{1}, s_{2}, \ldots, s_{k}$ are matched only by even indices larger than d_{n}, the value at index d_{n} in row n of A249223 must equal $k+1$. Because at only k even indices the value in row n of A237048 is 1 between indices d_{n} and r_{n}, all indices from d_{n} through r_{n} in row n of A249223 are positive defining a part of SRS that crosses the diagonal which implies that \#SRS $(\sigma(\mathrm{n}))$ is odd.
Conversely, if \#SRS $\left(\sigma(\mathrm{n})\right.$) is odd then there is an odd divisor s of $\mathrm{q}, 1 \leq \mathrm{s} \leq r_{n}$, such that for all indices i , $\mathrm{s} \leq \mathrm{i} \leq r_{n}$, the values in row n of A 249223 are positive with the value at s being 1 and 0 at $\mathrm{s}-1$ if $\mathrm{s}>1$. If $\mathrm{s} \times$ $2^{m+1} \leq r_{n}$ were true then A249223 would have value 0 at index $\mathrm{s} \times 2^{m+1}$ since all 1 's at all odd indices through s would be matched, contradicting the choice of s. Therefore, $s \times 2^{m+1}>r_{n}$ and $D_{n} \neq \varnothing$.

