A condition on the odd divisors of n for the symmetric representation of $\sigma(n)$ to have an odd number of parts.

Hartmut F. W. Höft, 2018-02-12

Notations and Terminology

n =
$$2^m \times q$$
, m ≥ 0 , q odd.
 $r_n = \left\lfloor \frac{1}{2} \left(\sqrt{8n+1} - 1 \right) \right\rfloor$
 $D_n = \{ s : s | q \text{ and } s \times 2^{m+1} > r_n \}$
 $E_n = \{ s : s | q \text{ and } s \times 2^{m+1} \le r_n \}$
 $d_n = \min(D_n) \text{ and } e_n = \max(E_n) \text{ when the respective sets are not empty.}$

We use SRS for the phrase "symmetric representation of sigma"; SRS($\sigma(n)$) denotes its area (which equals $\sigma(n)$, see A280851), and #SRS($\sigma(n)$) denotes the "number of parts of the symmetric representation of $\sigma(n)$ ".

Theorem

 $D_n \neq \emptyset$ is equivalent to $\#SRS(\sigma(n))$ is odd.

Proof

Suppose $D_n \neq \emptyset$. If $E_n = \emptyset$ then $1 \in D_n$ and 1's in row n of A237048 occur only at odd indices so that all entries in row n of A249223 are positive, i.e. $\#SRS(\sigma(n)) = 1$. Let $E_n \neq \emptyset$ and suppose $e_n \times 2^{m+1} < d_n$. Then the number of 1's at odd indices equals the number of 1's at even indices for indices less than d_n so that there is a 0 at index $d_n - 1$ in row n of A237048 as well as A249223. Therefore, all indices from d_n through r_n in row n of A249223 are positive defining a part of SRS that crosses the diagonal which implies that $\#SRS(\sigma(n))$ is odd. Finally, if $E_n \neq \emptyset$ and $d_n < e_n \times 2^{m+1} \le r_n$ suppose that $s_1 < s_2 < ... < s_k = e_n$, $k \ge 1$, are the elements in E_n satisfying

 $s_1 < s_2 < \dots < s_k = e_n < d_n < s_1 \times 2^{m+1} < \dots < s_k \times 2^{m+1} = e_n \times 2^{m+1} \le r_n.$

Since odd divisors $s_1, s_2, ..., s_k$ are matched only by even indices larger than d_n , the value at index d_n in row n of A249223 must equal k+1. Because at only k even indices the value in row n of A237048 is 1 between indices d_n and r_n , all indices from d_n through r_n in row n of A249223 are positive defining a part of SRS that crosses the diagonal which implies that #SRS($\sigma(n)$) is odd.

Conversely, if $\#SRS(\sigma(n))$ is odd then there is an odd divisor s of q, $1 \le s \le r_n$, such that for all indices i, $s \le i \le r_n$, the values in row n of A249223 are positive with the value at s being 1 and 0 at s-1 if s>1. If $s \ge 2^{m+1} \le r_n$ were true then A249223 would have value 0 at index $s \ge 2^{m+1}$ since all 1's at all odd indices through s would be matched, contradicting the choice of s. Therefore, $s \ge 2^{m+1} > r_n$ and $D_n \ne \emptyset$.