%I #7 Jul 05 2019 12:26:56
%S 1,2,145,2125,2310,3210,10125,10234,10310,11125,11310,12312,13010,
%T 13110,13211,13212,21312,23111,23112,30010,30110,31010,31110,31212,
%U 32112,40585,52130,111312,113112,131112,133240,135250,153250,200213
%N Numbers divisible by the sum of factorials of their digits [A061602(n)] and also terminate in the sum of factorials of their digits.
%e a(8)=10234: 1!+0!+2!+3!+4! = 34 and 10234/34 = 301.
%t dsfQ[n_]:=Module[{f=Total[IntegerDigits[n]!]},Divisible[n,f]&&Mod[ n,10^IntegerLength[f]]==f]; Select[Range[201000],dsfQ] (* _Harvey P. Dale_, Jul 05 2019 *)
%Y Cf. A061602.
%K base,nonn
%O 1,2
%A _Jason Earls_, May 26 2002
