Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Aug 20 2024 11:27:24
%S 1,1,3,5,3,9,11,3,15,17,5,21,15,9,27,29,9,15,35,11,39,41,9,45,35,15,
%T 51,27,17,57,59,15,33,65,21,69,71,15,45,77,27,81,45,27,87,55,29,51,95,
%U 27,99,101,15,105,107,35,111,63,33,75,99,39,75,125,41,129,85,27,135,137
%N Number of positive integers, k, where k <= 2n+1 and gcd(k, 2n+1) = gcd(k+1, 2n+1) = 1.
%H Walter Klotz and Torsten Sander, <a href="https://doi.org/10.37236/963">Some Properties of Unitary Cayley Graphs</a>, The Electronic Journal of Combinatorics, Volume 14 (2007), #R45. See Corollary 7 p. 4.
%F a(n) = A058026(2*n+1). - _Ridouane Oudra_, Aug 20 2024
%p A070554:=proc(n) local p, a:=2*n+1; for p in numtheory[factorset](2*n+1) do a:=a*(1-2/p) end do; a end proc: seq(A070554(n), n=0..100); # _Ridouane Oudra_, Aug 20 2024
%o (PARI) a(n) = my(n = 2*n+1); n*prod(p=1, n, if (isprime(p) && !(n % p), (1-2/p), 1)); \\ _Michel Marcus_, Feb 02 2016
%Y Bisection of A058026.
%K nonn
%O 0,3
%A _Leroy Quet_, Nov 15 2000
%E More terms from _Sascha Kurz_, Feb 02 2003