|
|
A070400
|
|
a(n) = 6^n mod 37.
|
|
1
|
|
|
1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31, 1, 6, 36, 31
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,-1,1).
|
|
FORMULA
|
a(n) = (1/12)*{127*(n mod 4)+52*[(n+1) mod 4]-53*[(n+2) mod 4]+22*[(n+3) mod 4]}, with n>=0. - Paolo P. Lava, Apr 16 2010
From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-1) - a(n-2) + a(n-3).
G.f.: ( -1-5*x-31*x^2 ) / ( (x-1)*(1+x^2) ). (End)
From G. C. Greubel, Mar 19 2016: (Start)
a(n) = a(n-4).
a(n) = (1/2)*(37 - 35*cos(n*Pi/2) - 25*sin(n*Pi/2)).
E.g.f.: (1/2)*(37*exp(x) - 35*cos(x) - 25*sin(x)). (End)
|
|
MATHEMATICA
|
PowerMod[6, Range[0, 50], 37] (* G. C. Greubel, Mar 19 2016 *)
|
|
PROG
|
(Sage) [power_mod(6, n, 37)for n in range(0, 84)] # Zerinvary Lajos, Nov 27 2009
(PARI) a(n)=lift(Mod(6, 37)^n) \\ Charles R Greathouse IV, Mar 22 2016
|
|
CROSSREFS
|
Sequence in context: A137868 A070401 A330681 * A222929 A222784 A043063
Adjacent sequences: A070397 A070398 A070399 * A070401 A070402 A070403
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane, May 12 2002
|
|
STATUS
|
approved
|
|
|
|