%I #27 Sep 15 2018 18:40:46
%S 23,61,71,109,157,173,199,211,223,239,269,283,373,383,421,443,487,503,
%T 547,599,691,701,719,829,991,1031,1153,1289,1297,1319,1399,1433,1453,
%U 1531,1579,1619,1667,1721,1823,1873,1907,1979,2029,2153,2251,2269,2381
%N Primes p such that there exists k such that p = prime(k) + prime(k+2) + prime(k+4).
%C Equivalently, primes that are the sum of 3 alternate primes. - _Muniru A Asiru_, Mar 05 2018
%H Harvey P. Dale, <a href="/A068363/b068363.txt">Table of n, a(n) for n = 1..1000</a>
%e From _Muniru A Asiru_, Mar 26 2018: (Start)
%e 23 is a term because prime(2) + prime(4) + prime(6) = 3 + 7 + 13 = 23, a prime.
%e 61 is a term because prime(6) + prime(8) + prime(10) = 13 + 19 + 29 = 61, a prime.
%e ... (End)
%p select(isprime,[seq(sum(ithprime(2*i-1+k),i=1..3),k=0..150)]); # _Muniru A Asiru_, Mar 05 2018
%t Select[#[[1]]+#[[3]]+#[[5]]&/@Partition[Prime[Range[200]],5,1],PrimeQ] (* _Harvey P. Dale_, Mar 16 2017 *)
%o (GAP) P:=Filtered([1..10000],IsPrime);;
%o Filtered(List([0..150],k->Sum([1..3],i->P[2*i-1+k])),IsPrime); # _Muniru A Asiru_, Mar 05 2018
%Y Cf. A068364.
%K easy,nonn
%O 1,1
%A _Benoit Cloitre_, Feb 28 2002