This site is supported by donations to The OEIS Foundation.



Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A068346 a(n) = n'' = second arithmetic derivative of n. 23


%S 0,0,0,0,4,0,1,0,16,5,1,0,32,0,6,12,80,0,10,0,44,7,1,0,48,7,8,27,80,0,

%T 1,0,176,9,1,16,92,0,10,32,72,0,1,0,112,16,10,0,240,9,39,24,92,0,108,

%U 32,96,13,1,0,96,0,14,20,640,21,1,0,156,15,1,0,220,0,16,16,176,21,1,0,368,216

%N a(n) = n'' = second arithmetic derivative of n.

%C a(A000040(n)) = 0; a(A157037(n)) = 1. - _Reinhard Zumkeller_, Feb 22 2009

%C a(2p) = 1 for any prime p implies p,p+2 form a twin prime pair. - _Kevin J. Gomez_, Aug 29 2017

%H T. D. Noe and Alois P. Heinz, <a href="/A068346/b068346.txt">Table of n, a(n) for n = 0..10000</a> (first 2000 terms from T. D. Noe)

%H Victor Ufnarovski and Bo Ã…hlander, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL6/Ufnarovski/ufnarovski.html">How to Differentiate a Number</a>, J. Integer Seqs., Vol. 6, 2003.

%F a(n) = A003415(A003415(n)).

%p d:= n-> n*add(i[2]/i[1], i=ifactors(n)[2]):

%p a:= n-> d(d(n));

%p seq(a(n), n=0..100); # _Alois P. Heinz_, Aug 29 2017

%t dn[0]=0; dn[1]=0; dn[n_]:=Module[{f=Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus@@(n*f[[2]]/f[[1]])]]; Table[dn[dn[n]], {n, 100}] (T. D. Noe)

%t f[n_] := If[ Abs@ n < 2, 0, n*Total[#2/#1 & @@@ FactorInteger[Abs@ n]]]; Table[ f[ f[ n]], {n, 81}] (* _Robert G. Wilson v_, May 12 2012 *)

%o (Haskell)

%o a068346 = a003415 . a003415 -- _Reinhard Zumkeller_, Nov 10 2013

%Y Cf. A003415 (arithmetic derivative of n), A099306 (third arithmetic derivative of n).

%Y Column k=2 of A258651.

%K nonn,look

%O 0,5

%A _Reinhard Zumkeller_, Feb 28 2002

%E More terms from _T. D. Noe_, Oct 12 2004

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 03:27 EST 2019. Contains 329836 sequences. (Running on oeis4.)