login
Numerators of coefficients in power series for (Product_{i=1..5} (x+i)) / (Product_{i=1..5} (i-x)) = Sum_{n>=0} a(n)/b(n)*x^n.
0

%I #14 Jan 30 2024 21:01:38

%S 1,137,18769,1799603,140815861,9800649707,638003187109,40003144104683,

%T 2456948367146821,149230625474121227,9010618306714845349,

%U 542390253445959003563,32597040868332220933381,1957452401279697344559947,117496474687502028535109989

%N Numerators of coefficients in power series for (Product_{i=1..5} (x+i)) / (Product_{i=1..5} (i-x)) = Sum_{n>=0} a(n)/b(n)*x^n.

%F If n > 0, denominators b(n) = 10^n*A026532(2n-1).

%F Lim_{n->infinity} a(n)/b(n) = 30.

%K easy,frac,nonn

%O 0,2

%A _Benoit Cloitre_, Mar 12 2002

%E Offset corrected and more terms from _Sean A. Irvine_, Jan 30 2024