Proof of conjectured formula for A068082

Robert Israel

June 5, 2018

The conjectured terms $f(n) = (169 \cdot 9^{n-3} - 1)/8 = x(x+1)/2$ where $x = (13 \cdot 3^{n-3} - 1)/2$, so these are triangular for $n \ge 3$, and f(n+1) = 9f(n) + 1. Thus all we need to do is verify that kf(n)+1 is not a triangular number, i.e. 8kf(n)+9 is not a square, for $k = 0, 1, \ldots, 8$.

Note that $8kf(n) + 9 \equiv -k \mod 9$ if $n \ge 4$, and this is not a square mod 9 unless k = 5 or k = 8.

For k = 5, $40f(n)+9 = 845 \cdot 9^{n-3}+4$. If this is y^2 , i.e. $845 \cdot 9^{n-3} = y^2 - 4 = (y-2)(y+2)$. Now only one of y - 2 and y + 2 can be divisible by 9, so one of these is divisible by (and thus \geq) 9^{n-3} , and the other divides (and thus \leq) 845. If $n \geq 7$, $9^{n-3} > 845 + 4$, so this is impossible.

Similarly, for k = 8, $64f(n) + 9 = 1352 \cdot 9^{n-3} + 1$. If this is y^2 , i.e., $1352 \cdot 9^{n-3} = (y-1)(y+1)$, and again this is impossible for $n \ge 7$ as $9^{n-3} > 1352 + 2$.