Proof of conjectured formula for A068082

Robert Israel

June 5, 2018

The conjectured terms $f(n)=\left(169 \cdot 9^{n-3}-1\right) / 8=x(x+1) / 2$ where $x=\left(13 \cdot 3^{n-3}-1\right) / 2$, so these are triangular for $n \geq 3$, and $f(n+1)=9 f(n)+1$. Thus all we need to do is verify that $k f(n)+1$ is not a triangular number, i.e. $8 k f(n)+9$ is not a square, for $k=0,1, \ldots, 8$.

Note that $8 k f(n)+9 \equiv-k \bmod 9$ if $n \geq 4$, and this is not a square $\bmod 9$ unless $k=5$ or $k=8$.

For $k=5,40 f(n)+9=845 \cdot 9^{n-3}+4$. If this is y^{2}, i.e. $845 \cdot 9^{n-3}=y^{2}-4=(y-2)(y+2)$. Now only one of $y-2$ and $y+2$ can be divisible by 9 , so one of these is divisible by (and thus \geq) 9^{n-3}, and the other divides (and thus \leq) 845 . If $n \geq 7,9^{n-3}>845+4$, so this is impossible.

Similarly, for $k=8,64 f(n)+9=1352 \cdot 9^{n-3}+1$. If this is y^{2}, i.e., $1352 \cdot 9^{n-3}=$ $(y-1)(y+1)$, and again this is impossible for $n \geq 7$ as $9^{n-3}>1352+2$.

