login
J_n(n), where J is the Jordan function, J_n(n) = n^n product{p|n}(1 - 1/p^n), the product is over the distinct primes, p, dividing n.
8

%I #18 Jan 09 2015 07:59:51

%S 1,3,26,240,3124,45864,823542,16711680,387400806,9990233352,

%T 285311670610,8913906892800,302875106592252,11111328602468784,

%U 437893859848932344,18446462598732840960,827240261886336764176,39346257879101671328376,1978419655660313589123978

%N J_n(n), where J is the Jordan function, J_n(n) = n^n product{p|n}(1 - 1/p^n), the product is over the distinct primes, p, dividing n.

%H Alois P. Heinz, <a href="/A067858/b067858.txt">Table of n, a(n) for n = 1..350</a>

%F J_n(n) = sum{k|n} mu(n/k) k^n, where mu() is the Moebius function.

%p with(numtheory):

%p a:= n-> n^n*mul(1-1/p^n, p=factorset(n)):

%p seq(a(n), n=1..20); # _Alois P. Heinz_, Jan 09 2015

%t JordanTotient[n_,k_:1]:=DivisorSum[n, #^k*MoebiusMu[n/#]&]/; (n>0)&&IntegerQ[n]; A067858[n_]:=JordanTotient[n,n]; Array[A067858,20]

%Y Main diagonal of A059379, A059380.

%K nonn

%O 1,2

%A _Leroy Quet_, Feb 15 2002