login
a(n) = (lcm_{k=0..n} (2^k + 1))/(lcm_{k=0..n-1} (2^k + 1)).
4

%I #16 Apr 19 2019 12:01:02

%S 3,5,3,17,11,13,43,257,57,205,683,241,2731,3277,331,65537,43691,4033,

%T 174763,61681,5419,838861,2796203,65281,1016801,13421773,261633,

%U 15790321,178956971,80581,715827883,4294967297,1397419,3435973837

%N a(n) = (lcm_{k=0..n} (2^k + 1))/(lcm_{k=0..n-1} (2^k + 1)).

%C The primitive part of 2^n + 1. Bisection of A019320. - _T. D. Noe_, Jul 24 2008

%H T. D. Noe, <a href="/A066845/b066845.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = cyclotomic(2*n, 2). - _Vladeta Jovovic_, Apr 05 2004

%t Cyclotomic[2*Range[40],2] (* _Harvey P. Dale_, Apr 19 2019 *)

%o (PARI) a(n) = polcyclo(2*n, 2); \\ _Michel Marcus_, Mar 06 2015

%Y Cf. A051844, A034268, A019320.

%Y Cf. A019320.

%K easy,nonn

%O 1,1

%A _Vladeta Jovovic_, Jan 20 2002